206
Views
4
CrossRef citations to date
0
Altmetric
Review

Neonatal hypoxic ischaemic encephalopathy: current and future treatment options

, MBBS MRCPCH, &

Bibliography

  • ADEdwards, KBNelson. Neonatal encephalopathies. Time to reconsider the cause of encephalopathies. BMJ 1998;317(7172):1537-8
  • NBadawi, JJKurinczuk, JMKeogh, et al. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 1998;317(7172):1554-8
  • NBadawi, JJKurinczuk, JMKeogh, et al. Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 1998;317(7172):1549-53
  • KEvans, ASRigby, PHamilton, et al. The relationships between neonatal encephalopathy and cerebral palsy: a cohort study. J Obstet Gynaecol 2001;21(2):114-20
  • JBryce, CBoschi-Pinto, KShibuya, REBlack; Group WHOCHER. WHO estimates of the causes of death in children. Lancet 2005;365(9465):1147-52
  • JLawn, KShibuya, CStein. No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull World Health Organ 2005;83(6):409-17
  • JELawn, KWilczynska-Ketende, SNCousens. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 2006;35(3):706-18
  • DVAzzopardi, BStrohm, ADEdwards, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361(14):1349-58
  • SShankaran, ARLaptook, RAEhrenkranz, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005;353(15):1574-84
  • MKruse, SIMichelsen, EMFlachs, et al. Lifetime costs of cerebral palsy. Dev Med Child Neurol 2009;51(8):622-8
  • ADEdwards, DAzzopardi, AJGunn. Neonatal neural rescue: a clinical guide. 1 edition. Cambridge University Press; UK: 2013
  • DMFerriero. Neonatal brain injury. N Engl J Med 2004;351(19):1985-95
  • HHoeger, EEngidawork, DStolzlechner, et al. Long-term effect of moderate and profound hypothermia on morphology, neurological, cognitive and behavioural functions in a rat model of perinatal asphyxia. Amino Acids 2006;31(4):385-96
  • AOhmura, WNakajima, AIshida, et al. Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain Dev 2005;27(7):517-26
  • NJRobertson, MNakakeeto, CHagmann, et al. Therapeutic hypothermia for birth asphyxia in low-resource settings: a pilot randomised controlled trial. Lancet 2008;372(9641):801-3
  • NICE. Therapeutic hypothermia with intracorporeal temperature monitoring for hypoxic perinatal brain injury. In: Excellence NIoHaC, editor. 2010
  • MVJohnston, AFatemi, MAWilson, FNorthington. Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol 2011;10(4):372-82
  • RGeddes, RCVannucci, SJVannucci. Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Dev Neurosci 2001;23(3):180-5
  • JMPerlman. Brain injury in the term infant. Semin Perinatol 2004;28(6):415-24
  • PDGluckman, JSWyatt, DAzzopardi, et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005;365(9460):663-70
  • WZhou, PWang, LTao. Effect of melatonin on proliferation of neonatal cord blood mononuclear cells. World J Pediatr 2009;5(4):300-3
  • SEJacobs, MBerg, RHunt, et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013;1:CD003311
  • AJGunn, TRGunn, HHde Haan, et al. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest 1997;99(2):248-56
  • AJGunn, TRGunn, MIGunning, et al. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998;102(5):1098-106
  • ARLaptook, RJCorbett, RSterett, et al. Modest hypothermia provides partial neuroprotection when used for immediate resuscitation after brain ischemia. Pediatr Res 1997;42(1):17-23
  • ARLaptook, RJCorbett, RSterett, et al. Modest hypothermia provides partial neuroprotection for ischemic neonatal brain. Pediatr Res 1994;35(4 Pt 1):436-42
  • SEJacobs, CJMorley, TEInder, et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch Pediatr Adolesc Med 2011;165(8):692-700
  • GSimbruner, RAMittal, FRohlmann, RMuche; neo.nEURO.network Trial Participants. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 2010;126(4):e771-8
  • WHZhou, GQCheng, XMShao, et al. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: a multicenter randomized controlled trial in China. J Pediatr 2010;157(3):367-72; 72.e1-3
  • RGuillet, ADEdwards, MThoresen, et al. Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr Res 2012;71(2):205-9
  • SShankaran, APappas, SAMcDonald, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012;366(22):2085-92
  • DAzzopardi, BStrohm, NMarlow, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 2014;371(2):140-9
  • BStrohm, AHobson, PBrocklehurst, et al. Subcutaneous fat necrosis after moderate therapeutic hypothermia in neonates. Pediatrics 2011;128(2):e450-2
  • JKattwinkel, JMPerlman, KAziz, et al. Part 15: neonatal resuscitation: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2010;122(18 Suppl 3):S909-19
  • AAdams, TAustin, JCBecher, et al. British Association of Perinatal Medicine. Position statement on therapeutic cooling for neonatal encephalopathy. 2010. Available from: http://www.bapm.org/publications/documents/guidelines/Position_Statement_Therapeutic_Cooling_Neonatal_Encephalopathy_July%202010.pdf
  • PVilla, PBigini, TMennini, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003;198(6):971-5
  • LWang, ZZhang, YWang, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35(7):1732-7
  • ZZChong, JQKang, KMaiese. Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res 2002;11(6):863-71
  • MBergeron, JMGidday, AYYu, et al. Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 2000;48(3):285-96
  • RASheldon, AAminoff, CLLee, et al. Hypoxic preconditioning reverses protection after neonatal hypoxia-ischemia in glutathione peroxidase transgenic murine brain. Pediatr Res 2007;61(6):666-70
  • JMGidday, JCFitzgibbons, ARShah, TSPark. Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 1994;168(1-2):221-4
  • RCVannucci, JTowfighi, SJVannucci. Hypoxic preconditioning and hypoxic-ischemic brain damage in the immature rat: pathologic and metabolic correlates. J Neurochem 1998;71(3):1215-20
  • MGustavsson, MFAnderson, CMallard, HHagberg. Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats. Pediatr Res 2005;57(2):305-9
  • RRan, HXu, ALu, et al. Hypoxia preconditioning in the brain. Dev Neurosci 2005;27(2-4):87-92
  • MDigicaylioglu, SALipton. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 2001;412(6847):641-7
  • BAKellert, RJMcPherson, SEJuul. A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res 2007;61(4):451-5
  • MKawakami, SIwasaki, KSato, MTakahashi. Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem Biophys Res Commun 2000;279(1):293-7
  • YSun, JWCalvert, JHZhang. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005;36(8):1672-8
  • MDzietko, UFelderhoff-Mueser, MSifringer, et al. Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity. Neurobiol Dis 2004;15(2):177-87
  • LWang, MChopp, SRGregg, et al. Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab 2008;28(7):1361-8
  • MSugawa, YSakurai, YIshikawa-Ieda, et al. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 2002;44(4):391-403
  • ASola, TCWen, SEHamrick, DMFerriero. Potential for protection and repair following injury to the developing brain: a role for erythropoietin? Pediatr Res 2005;57(5 Pt 2):110R-7R
  • AKumral, NUysal, KTugyan, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res 2004;153(1):77-86
  • ASola, MRogido, BHLee, et al. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 2005;57(4):481-7
  • JMPlane, RLiu, TWWang, et al. Neonatal hypoxic-ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 2004;16(3):585-95
  • YSun, JWCalvert, JHZhang. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005;36(8):1672-8
  • CMTraudt, RJMcPherson, LABauer, et al. Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci 2013;35(6):491-503
  • SAher, AOhlsson. Late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 2006(3):CD004868
  • MLBrines, PGhezzi, SKeenan, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 2000;97(19):10526-31
  • SEJuul, RJMcPherson, FXFarrell, et al. Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate 2004;85(2):138-44
  • PAStatler, RJMcPherson, LABauer, et al. Pharmacokinetics of high-dose recombinant erythropoietin in plasma and brain of neonatal rats. Pediatr Res 2007;61(6):671-5
  • EJDemers, RJMcPherson, SEJuul. Erythropoietin protects dopaminergic neurons and improves neurobehavioral outcomes in juvenile rats after neonatal hypoxia-ischemia. Pediatr Res 2005;58(2):297-301
  • RJMcPherson, EJDemers, SEJuul. Safety of high-dose recombinant erythropoietin in a neonatal rat model. Neonatology 2007;91(1):36-43
  • SEJuul, RJMcPherson, LABauer, et al. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics 2008;122(2):383-91
  • YWWu, LABauer, RABallard, et al. Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics 2012;130(4):683-91
  • FFGonzalez, RAbel, CRAlmli, et al. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009;31(5):403-11
  • PTTsai, JJOhab, NKertesz, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006;26(4):1269-74
  • SEJuul, DJLedbetter, AEJoyce, et al. Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut 2001;49(2):182-9
  • SFishbane, ARNissenson. The new FDA label for erythropoietin treatment: how does it affect hemoglobin target? Kidney Int 2007;72(7):806-13
  • STCarmichael. Translating the frontiers of brain repair to treatments: starting not to break the rules. Neurobiol Dis 2010;37(2):237-42
  • AWeber, MDzietko, MBerns, et al. Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis 2005;20(2):594-600
  • ACariou, YEClaessens, FPene, et al. Early high-dose erythropoietin therapy and hypothermia after out-of-hospital cardiac arrest: a matched control study. Resuscitation 2008;76(3):397-404
  • HEhrenreich, KWeissenborn, HPrange, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009;40(12):e647-56
  • JCFauchere, CDame, RVonthein, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics 2008;122(2):375-82
  • SEJuul, RJMcPherson, TKBammler, et al. Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model. Dev Neurosci 2008;30(4):231-42
  • CZhu, WKang, FXu, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009;124(2):e218-26
  • MFElmahdy, SGhareeb Mahdy, EBaligh Ewiss, et al. Value of duplex scanning in differentiating embolic from thrombotic arterial occlusion in acute limb ischemia. Cardiovasc Revasc Med 2010;11(4):223-6
  • NLakic, KSurlan, AJerin, et al. Importance of erythropoietin in brain protection after cardiac surgery: a pilot study. Heart Surg Forum 2010;13(3):E185-9
  • NPFranks, RDickinson, SLde Sousa, et al. How does xenon produce anaesthesia? Nature 1998;396(6709):324
  • SWilhelm, DMa, MMaze, NPFranks. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002;96(6):1485-91
  • DMa, MHossain, NRajakumaraswamy, et al. Combination of xenon and isoflurane produces a synergistic protective effect against oxygen-glucose deprivation injury in a neuronal-glial co-culture model. Anesthesiology 2003;99(3):748-51
  • DMa, HYang, JLynch, et al. Xenon attenuates cardiopulmonary bypass-induced neurologic and neurocognitive dysfunction in the rat. Anesthesiology 2003;98(3):690-8
  • HMHomi, NYokoo, DMa, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 2003;99(4):876-81
  • MSchmidt, TMarx, SArmbruster, et al. Effect of Xenon on elevated intracranial pressure as compared with nitrous oxide and total intravenous anesthesia in pigs. Acta Anaesthesiol Scand 2005;49(4):494-501
  • JDingley, JTooley, HPorter, MThoresen. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 2006;37(2):501-6
  • DMa, MHossain, GKPettet, et al. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats. J Cereb Blood Flow Metab 2006;26(2):199-208
  • DMa, PWilliamson, AJanuszewski, et al. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology 2007;106(4):746-53
  • MGruss, TJBushell, DPBright, et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004;65(2):443-52
  • ADinse, KJFohr, MGeorgieff, et al. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br J Anaesth 2005;94(4):479-85
  • EKilic, UKilic, JSoliz, et al. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J 2005;19(14):2026-8
  • DMa, MHossain, AChow, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005;58(2):182-93
  • EGilland, HHagberg. Is MK-801 neuroprotection mediated by systemic hypothermia in the immature rat? Neuroreport 1997;8(7):1603-5
  • SFaulkner, ABainbridge, TKato, et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 2011;70(1):133-50
  • JLMartin, DMa, MHossain, et al. Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat. Br J Anaesth 2007;98(2):236-40
  • MThoresen, CEHobbs, TWood, et al. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2009;29(4):707-14
  • RDSanders, DMa, MMaze. Xenon: elemental anaesthesia in clinical practice. Br Med Bull 2004;71:115-35
  • TGoto, YNakata, SMorita. Will xenon be a stranger or a friend?: the cost, benefit, and future of xenon anesthesia. Anesthesiology 2003;98(1):1-2
  • TGoto, KSuwa, SUezono, et al. The blood-gas partition coefficient of xenon may be lower than generally accepted. Br J Anaesth 1998;80(2):255-6
  • YNakata, TGoto, SMorita. Comparison of inhalation inductions with xenon and sevoflurane. Acta Anaesthesiol Scand 1997;41(9):1157-61
  • MNalos, UWachter, APittner, et al. Arterial and mixed venous xenon blood concentrations in pigs during wash-in of inhalational anaesthesia. Br J Anaesth 2001;87(3):497-8
  • DMa, SWilhelm, MMaze, NPFranks. Neuroprotective and neurotoxic properties of the ‘inert’ gas, xenon. Br J Anaesth 2002;89(5):739-46
  • SSakamoto, SNakao, MMasuzawa, et al. The differential effects of nitrous oxide and xenon on extracellular dopamine levels in the rat nucleus accumbens: a microdialysis study. Anesth Analg 2006;103(6):1459-63
  • MCoburn, OKunitz, JHBaumert, et al. Randomized controlled trial of the haemodynamic and recovery effects of xenon or propofol anaesthesia. Br J Anaesth 2005;94(2):198-202
  • RRossaint, MReyle-Hahn, JSchulte Am Esch, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 2003;98(1):6-13
  • BPreckel, JMullenheim, AMoloschavij, et al. Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg 2000;91(6):1327-32
  • ABedi, JMMurray, JDingley, et al. Use of xenon as a sedative for patients receiving critical care. Crit Care Med 2003;31(10):2470-7
  • NAHorn, KEHecker, BBongers, et al. Coagulation assessment in healthy pigs undergoing single xenon anaesthesia and combinations with isoflurane and sevoflurane. Acta Anaesthesiol Scand 2001;45(5):634-8
  • LWde Rossi, NAHorn, JHBaumert, et al. Xenon does not affect human platelet function in vitro. Anesth Analg 2001;93(3):635-40
  • ABedi, WTMcBride, MAArmstrong, et al. Xenon has no effect on cytokine balance and adhesion molecule expression within an isolated cardiopulmonary bypass system. Br J Anaesth 2002;89(4):546-50
  • GGreisen, OPryds. Intravenous 133Xe clearance in preterm neonates with respiratory distress. Internal validation of CBF infinity as a measure of global cerebral blood flow. Scand J Clin Lab Invest 1988;48(7):673-8
  • SDFaulkner, NADownie, CJMercer, et al. A xenon recirculating ventilator for the newborn piglet: developing clinical applications of xenon for neonates. Eur J Anaesthesiol 2012;29(12):577-85
  • DAzzopardi, NRobertson, AKapetenakis, et al. A xenon ventilator: developing clinical applications for neonatal hypoxic ischaemic encephalopathy. Paediatric Academic Society; Boston: 2013
  • DAzzopardi, NJRobertson, AKapetanakis, et al. Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed 2013;98(5):F437-9
  • NJawad, MRizvi, JGu, et al. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury. Neurosci Lett 2009;460(3):232-6
  • RGuerrini, LParmeggiani. Topiramate and its clinical applications in epilepsy. Expert Opin Pharmacother 2006;7(6):811-23
  • RPShank, JFGardocki, AJStreeter, BEMaryanoff. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia 2000;41(Suppl 1):S3-9
  • CCosta, GMartella, BPicconi, et al. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 2006;37(5):1319-26
  • APKudin, GDebska-Vielhaber, SVielhaber, et al. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia 2004;45(12):1478-87
  • CZona, MTCiotti, MAvoli. Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett 1997;231(3):123-6
  • YYang, AShuaib, QLi, MMSiddiqui. Neuroprotection by delayed administration of topiramate in a rat model of middle cerebral artery embolization. Brain Res 1998;804(2):169-76
  • SSchubert, UBrandl, MBrodhun, et al. Neuroprotective effects of topiramate after hypoxia-ischemia in newborn piglets. Brain Res 2005;1058(1-2):129-36
  • YLiu, JDBarks, GXu, FSSilverstein. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats. Stroke 2004;35(6):1460-5
  • LFilippi, Gla Marca, PFiorini, et al. Topiramate concentrations in neonates treated with prolonged whole body hypothermia for hypoxic ischemic encephalopathy. Epilepsia 2009;50(11):2355-61
  • CGlier, MDzietko, PBittigau, et al. Therapeutic doses of topiramate are not toxic to the developing rat brain. Exp Neurol 2004;187(2):403-9
  • SSGarris, KSOles. Impact of topiramate on serum bicarbonate concentrations in adults. Ann Pharmacother 2005;39(3):424-6
  • ISLee, KJung, MKim, KIPark. Neural stem cells: properties and therapeutic potentials for hypoxic-ischemic brain injury in newborn infants. Pediatr Int 2010;52(6):855-65
  • AUHicks, KHewlett, VWindle, et al. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 2007;146(1):31-40
  • EKPark, KBKwon, KIPark, et al. Role of Ca(2+) in diallyl disulfide-induced apoptotic cell death of HCT-15 cells. Exp Mol Med 2002;34(3):250-7
  • MHoehn, EKustermann, JBlunk, et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 2002;99(25):16267-72
  • KIPark, MAHack, JOurednik, et al. Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal “reporter” neural stem cells. Exp Neurol 2006;199(1):156-78
  • KIPark, BTHimes, PEStieg, et al. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury. Exp Neurol 2006;199(1):179-90
  • YSato, KNakanishi, MHayakawa, et al. Reduction of brain injury in neonatal hypoxic-ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together with chondroitinase ABC. Reprod Sci 2008;15(6):613-20
  • AObenaus, NDilmac, BTone, et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol 2011;69(2):282-91
  • TDPalmer, PHSchwartz, PTaupin, et al. Cell culture. Progenitor cells from human brain after death. Nature 2001;411(6833):42-3
  • ALiesz, ESuri-Payer, CVeltkamp, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 2009;15(2):192-9
  • PMPimentel-Coelho, RMendez-Otero. Cell therapy for neonatal hypoxic-ischemic encephalopathy. Stem Cells Dev 2010;19(3):299-310
  • YKaneko, NTajiri, TPSu, et al. Combination treatment of hypothermia and mesenchymal stromal cells amplifies neuroprotection in primary rat neurons exposed to hypoxic-ischemic-like injury in vitro: role of the opioid system. PLoS One 2012;7(10):e47583
  • MWang, PRCrisostomo, CHerring, et al. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPK-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;291(4):R880-4
  • PRSanberg, DJEve, AEWilling, et al. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells. Cell Transplant 2011;20(1):85-94
  • MGeissler, HRDinse, SNeuhoff, et al. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One 2011;6(6):e20194
  • CMeier, JMiddelanis, BWasielewski, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 2006;59(2):244-9
  • TYasuhara, KHara, MMaki, et al. Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 2010;14(4):914-21
  • YWang, YDeng, GQZhou. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res 2008;1195:104-12
  • UMFischer, MTHarting, FJimenez, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 2009;18(5):683-92
  • CTvan Velthoven, AKavelaars, Fvan Bel, CJHeijnen. Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 2010;68(5):419-22
  • Sde Paula, ASVitola, SGreggio, et al. Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pediatr Res 2009;65(6):631-5
  • PMPimentel-Coelho, ESMagalhaes, LMLopes, et al. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 2010;19(3):351-8
  • KMin, JSong, JYKang, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells 2013;31(3):581-91
  • CTurkyilmaz, ZTurkyilmaz, YAtalay, et al. Magnesium pre-treatment reduces neuronal apoptosis in newborn rats in hypoxia-ischemia. Brain Res 2002;955(1-2):133-7
  • SMarret, PGressens, JFGadisseux, PEvrard. Prevention by magnesium of excitotoxic neuronal death in the developing brain: an animal model for clinical intervention studies. Dev Med Child Neurol 1995;37(6):473-84
  • ESpandou, VSoubasi, SPapoutsopoulou, et al. Neuroprotective effect of long-term MgSO4 administration after cerebral hypoxia-ischemia in newborn rats is related to the severity of brain damage. Reprod Sci 2007;14(7):667-77
  • GDZeevalk, WJNicklas. Evidence that the loss of the voltage-dependent Mg2+ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J Neurochem 1992;59(4):1211-20
  • JSugimoto, AMRomani, AMValentin-Torres, et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 2012;188(12):6338-46
  • DJHoffman, PJMarro, JEMcGowan, et al. Protective effect of MgSO4 infusion on nmda receptor binding characteristics during cerebral cortical hypoxia in the newborn piglet. Brain Res 1994;644(1):144-9
  • LWDoyle, CACrowther, PMiddleton, SMarret. Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review. Obstet Gynecol 2009;113(6):1327-33
  • AConde-Agudelo, RRomero. Antenatal magnesium sulfate for the prevention of cerebral palsy in preterm infants less than 34 weeks’ gestation: a systematic review and metaanalysis. Am J Obstet Gynecol 2009;200(6):595-609
  • MCetinkaya, TAlkan, FOzyener, et al. Possible neuroprotective effects of magnesium sulfate and melatonin as both pre- and post-treatment in a neonatal hypoxic-ischemic rat model. Neonatology 2011;99(4):302-10
  • FGoni-de-Cerio, AAlvarez, ILara-Celador, et al. Magnesium sulfate treatment decreases the initial brain damage alterations produced after perinatal asphyxia in fetal lambs. J Neurosci Res 2012;90(10):1932-40
  • HSameshima, TIkenoue. Long-term magnesium sulfate treatment as protection against hypoxic-ischemic brain injury in seven-day-old rats. Am J Obstet Gynecol 2001;184(2):185-90
  • HSameshima, AOta, TIkenoue. Pretreatment with magnesium sulfate protects against hypoxic-ischemic brain injury but postasphyxial treatment worsens brain damage in seven-day-old rats. Am J Obstet Gynecol 1999;180(3 Pt 1):725-30
  • APazaiti, VSoubasi, ESpandou, et al. Evaluation of long-lasting sensorimotor consequences following neonatal hypoxic-ischemic brain injury in rats: the neuroprotective role of MgSO4. Neonatology 2009;95(1):33-40
  • LWDoyle, PJAnderson, RHaslam, Australasian Collaborative Trial of Magnesium Sulphate Study Group. School-age outcomes of very preterm infants after antenatal treatment with magnesium sulfate vs placebo. Jama 2014;312(11):1105-13
  • RGalinsky, LBennet, FGroenendaal, et al. Magnesium is not consistently neuroprotective for perinatal hypoxia-ischemia in term-equivalent models in preclinical studies: a systematic review. Dev Neurosci 2014;36(2):73-82
  • CZhu, XWang, XCheng, et al. Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia. Brain Res 2004;996(1):67-75
  • HZhu, BPMeloni, SRMoore, et al. Intravenous administration of magnesium is only neuroprotective following transient global ischemia when present with post-ischemic mild hypothermia. Brain Res 2004;1014(1-2):53-60
  • FGroenendaal, CMRademaker, MCToet, LSde Vries. Effects of magnesium sulphate on amplitude-integrated continuous EEG in asphyxiated term neonates. Acta Paediatr 2002;91(10):1073-7
  • MLevene, MBlennow, AWhitelaw, et al. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch Dis Child Fetal Neonatal Ed 1995;73(3):F174-7
  • HIchiba, HTamai, HNegishi, et al. Randomized controlled trial of magnesium sulfate infusion for severe birth asphyxia. Pediatr Int 2002;44(5):505-9
  • MABhat, BACharoo, JIBhat, et al. Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics 2009;123(5):e764-9
  • GGathwala, AKhera, JSingh, BBalhara. Magnesium for neuroprotection in birth asphyxia. J Pediatr Neurosci 2010;5(2):102-4
  • MTKhashaba, BOShouman, AAShaltout, et al. Excitatory amino acids and magnesium sulfate in neonatal asphyxia. Brain Dev 2006;28(6):375-9
  • MTagin, PSShah, KSLee. Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J Perinatol 2013;33(9):663-9
  • RJReiter. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 1991;12(2):151-80
  • MLDubocovich, PDelagrange, DNKrause, et al. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010;62(3):343-80
  • DXTan, RJReiter, LCManchester, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002;2(2):181-97
  • AMMathes. Hepatoprotective actions of melatonin: possible mediation by melatonin receptors. World J Gastroenterol 2010;16(48):6087-97
  • POlivier, RHFontaine, GLoron, et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009;4(9):e7128
  • AAltun, BUgur-Altun. Melatonin: therapeutic and clinical utilization. Int J Clin Pract 2007;61(5):835-45
  • IHusson, BMesples, PBac, et al. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 2002;51(1):82-92
  • AKWelin, PSvedin, RLapatto, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007;61(2):153-8
  • KWatanabe, AWakatsuki, KShinohara, et al. Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain. J Pineal Res 2004;37(4):276-80
  • SLMiller, EBYan, MCastillo-Melendez, et al. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci 2005;27(2-4):200-10
  • LCHutton, MAbbass, HDickinson, et al. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci 2009;31(5):437-51
  • NRobertson, ABainbridge, EPowell, et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia piglet model. Pediatric Academic Societies; Boston: 2012
  • EGitto, MKarbownik, RJReiter, et al. Effects of melatonin treatment in septic newborns. Pediatr Res 2001;50(6):756-60
  • PWang, WZhou, LTao. [Effect of melatonin on the activation and proliferation of neonatal cord blood mononuclear cell]. Zhonghua Er Ke Za Zhi 2007;45(7):529-32
  • EGitto, RJReiter, AAmodio, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res 2004;36(4):250-5
  • EGitto, RJReiter, GSabatino, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res 2005;39(3):287-93
  • YOkatani, KOkamoto, KHayashi, et al. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 1998;25(3):129-34
  • SMReppert, RAChez, AAnderson, DCKlein. Maternal-fetal transfer of melatonin in the non-human primate. Pediatr Res 1979;13(6):788-91
  • PAVitte, CHarthe, PLestage, et al. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study. J Pineal Res 1988;5(5):437-53
  • FWaldhauser, MWaldhauser, HRLieberman, et al. Bioavailability of oral melatonin in humans. Neuroendocrinology 1984;39(4):307-13
  • MAldhous, CFraney, JWright, JArendt. Plasma concentrations of melatonin in man following oral absorption of different preparations. Br J Clin Pharmacol 1985;19(4):517-21
  • EALane, HBMoss. Pharmacokinetics of melatonin in man: first pass hepatic metabolism. J Clin Endocrinol Metab 1985;61(6):1214-16
  • JArendt. Melatonin and the mammalian pineal gland. 1st edition. Chapman & Hall; London: 1995
  • CJBojkowski, JArendt. Factors influencing urinary 6-sulphatoxymelatonin, a major melatonin metabolite, in normal human subjects. Clin Endocrinol (Oxf) 1990;33(4):435-44
  • NMMerchant, DVAzzopardi, AFHawwa, et al. Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol 2013;76(5):725-33
  • KAllegaert, SVanhaesebrouck, AKulo, et al. Prospective assessment of short-term propylene glycol tolerance in neonates. Arch Dis Child 2010;95(12):1054-8
  • HWu, KKBhopale, GAAnsari, BSKaphalia. Ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells: role of fatty acid ethyl esters. Alcohol Alcohol 2008;43(1):1-8
  • WYChan, TBNg. Development of pre-implantation mouse embryos under the influence of pineal indoles. J Neural Transm Gen Sect 1994;96(1):19-29
  • GJahnke, MMarr, CMyers, et al. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 1999;50(2):271-9
  • NBuscemi, BVandermeer, NHooton, et al. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006;332(7538):385-93
  • NBuscemi, BVandermeer, NHooton, et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 2005;20(12):1151-8
  • ACagnacci, JAElliott, SSYen. Melatonin: a major regulator of the circadian rhythm of core temperature in humans. J Clin Endocrinol Metab 1992;75(2):447-52
  • MTLin, JIChuang. Melatonin potentiates 5-HT(1A) receptor activation in rat hypothalamus and results in hypothermia. J Pineal Res 2002;33(1):14-19
  • DLWaldron, DBramble, PGringras. Melatonin: prescribing practices and adverse events. Arch Dis Child 2005;90(11):1206-7
  • SHSheldon. Pro-convulsant effects of oral melatonin in neurologically disabled children. Lancet 1998;351(9111):1254
  • NPeled, ZShorer, EPeled, GPillar. Melatonin effect on seizures in children with severe neurologic deficit disorders. Epilepsia 2001;42(9):1208-10
  • RDDickerman, QEStevens, JASteide, SJSchneider. Precocious puberty associated with a pineal cyst: is it disinhibition of the hypothalamic-pituitary axis? Neuro Endocrinol Lett 2004;25(3):173-5
  • JEJan, HEspezel, REAppleton. The treatment of sleep disorders with melatonin. Dev Med Child Neurol 1994;36(2):97-107
  • SLeppamaki, TPartonen, OVakkuri, et al. Effect of controlled-release melatonin on sleep quality, mood, and quality of life in subjects with seasonal or weather-associated changes in mood and behaviour. Eur Neuropsychopharmacol 2003;13(3):137-45
  • PSMcQuillen, DMFerriero. Selective vulnerability in the developing central nervous system. Pediatr Neurol 2004;30(4):227-35
  • FFGonzalez, DMFerriero. Neuroprotection in the newborn infant. Clin Perinatol 2009;36(4):859-80, vii
  • FSams-Dodd. Drug discovery: selecting the optimal approach. Drug Discov Today 2006;11(9-10):465-72
  • KStrimbu, JATavel. What are biomarkers? Curr Opin HIV AIDS 2010;5(6):463-6
  • ADEdwards, PBrocklehurst, AJGunn, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363
  • MRutherford, LARamenghi, ADEdwards, et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 2010;9(1):39-45
  • EJPorter, SJCounsell, ADEdwards, et al. Tract-based spatial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. Pediatr Res 2010;68(3):205-9
  • TRFleming, DLDeMets. Surrogate end points in clinical trials: are we being misled? Ann Intern Med 1996;125(7):605-13
  • XFan, AKavelaars, CJHeijnen, et al. Pharmacological neuroprotection after perinatal hypoxic-ischemic brain injury. Curr Neuropharmacol 2010;8(4):324-34
  • HElmahdy, AREl-Mashad, HEl-Bahrawy, et al. Human recombinant erythropoietin in asphyxia neonatorum. Pediatrics 2010;125(5):e1135-42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.