181
Views
3
CrossRef citations to date
0
Altmetric
Review

Genetics of the Ehlers–Danlos syndrome: more than collagen disorders

, MD, , MSc, , PhD, , PhD, , MD PhD & , MD PhD

Bibliography

  • BSteinmann, PMRoyce, ASuperti-Furga. The Ehlers-Danlos syndrome. In: Connective tissue and its heritable disorders. John Wiley & Sons, Hoboken, NJ, USA; 2003; p. 431-523
  • PBeighton, ADe Paepe, BSteinmann, et al. Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 1998;77:31-7
  • ADe Paepe, FMalfait. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet 2012;82:1-11
  • KGelse, EPöschl, TAigner. Collagens –structure, function, and biosynthesis. Adv Drug Deliv Rev 2003;55:1531-46
  • EGCanty, KEKadler. Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol A Mol Integr Physiol 2002;133:979-85
  • EGCanty, KEKadler. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 2005;118:1341-53
  • JBrinckmann, HNotbohm, PKMüller. Collagen. Springer Science & Business Media, Sharjah, United Arab Emirates; 2005
  • KEKadler, RBWatson. Procollagen C-peptidase: procollagen C-proteinase. Methods Enzymol 1995;248:771-81
  • EMakareeva, NAAviles, SLeikin. Chaperoning osteogenesis: new protein-folding disease paradigms. Trends Cell Biol 2011;21:168-76
  • EAMiller, RSchekman. COPII - a flexible vesicle formation system. Curr Opin Cell Biol 2013;25:420-7
  • CCBanos, AHThomas, CKKuo. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today 2008;84:228-44
  • MDTortorella, FMalfait, RABarve, et al. A review of the ADAMTS family, pharmaceutical targets of the future. Curr Pharm Des 2009;15:2359-74
  • AColige, SWLi, ALSieron, et al. cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA 1997;94:2374-9
  • RJFernandes, SHirohata, JMEngle, et al. Procollagen II amino propeptide processing by ADAMTS-3. Insights on dermatosparaxis. J Biol Chem 2001;276:31502-9
  • AColige, IVandenberghe, MThiry, et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem 2002;277:5756-66
  • KTakahara, GELyons, DSGreenspan. Bone morphogenetic protein-1 and a mammalian tolloid homologue (mTld) are encoded by alternatively spliced transcripts which are differentially expressed in some tissues. J Biol Chem 1994;269:32572-8
  • KTakahara, RBrevard, GGHoffman, et al. Characterization of a novel gene product (mammalian tolloid-like) with high sequence similarity to mammalian tolloid/bone morphogenetic protein-1. Genomics 1996;34:157-65
  • ICScott, ILBlitz, WNPappano, et al. Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev Biol 1999;213:283-300
  • DEBirk, PBrückner. Collagens, suprastructures, and collagen fibril assembly. In: Robert P. Mecham (editor). The extracellular matrix: an overview. Springer; Berlin, Heidelberg: 2011. p. 77-115
  • KEKadler, AHill, EGCanty-Laird. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 2008;20:495-501
  • CWu, JSBauer, RLJuliano, et al. The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J Biol Chem 1993;268:21883-8
  • KBurridge, MChrzanowska-Wodnicka. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996;12:463-518
  • DFMosher. Organization of the provisional fibronectin matrix: control by products of blood coagulation. Thromb Haemost 1995;74:529-33
  • ECWilliams, PAJanmey, JDFerry, et al. Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem 1982;257:14973-8
  • CZhong, MChrzanowska-Wodnicka, JBrown, et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 1998;141:539-51
  • JAMcDonald, DGKelley, TJBroekelmann. Role of fibronectin in collagen deposition: fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol 1982;92:485-92
  • BJDzamba, HWu, RJaenisch, et al. Fibronectin binding site in type I collagen regulates fibronectin fibril formation. J Cell Biol 1993;121:1165-72
  • DEBirk. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 2001;32:223-37
  • KGDanielson, HBaribault, DFHolmes, et al. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 1997;136:729-43
  • LAmeye, MFYoung. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002;12:107R-16R
  • JRMao, GTaylor, WBDean, et al. Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 2002;30:421-5
  • GVeit, UHansen, DRKeene, et al. Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 2006;281:27461-70
  • DEgging, Fvan den Berkmortel, GTaylor, et al. Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 2007;298:389-96
  • PHByers, MLMurray. Ehlers-Danlos syndrome: a showcase of conditions that lead to understanding matrix biology. Matrix Biol 2014;33:10-15
  • LRombaut, FMalfait, ACools, et al. Musculoskeletal complaints, physical activity and health-related quality of life among patients with the Ehlers-Danlos syndrome hypermobility type. Disabil Rehabil 2010;32:1339-45
  • CVLeier, TDCall, PKFulkerson, et al. The spectrum of cardiac defects in the Ehlers-Danlos syndrome, types I and III. Ann Intern Med 1980;92:171-8
  • J-DZeitoun, JHLefèvre, Vde Parades, et al. Functional digestive symptoms and quality of life in patients with Ehlers-Danlos syndromes: results of a national cohort study on 134 patients. PLoS One 2013;8:e80321
  • SSymoens, DSyx, FMalfait, et al. Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat 2012;33:1485-93
  • MRitelli, CDordoni, MVenturini, et al. Clinical and molecular characterization of 40 patients with classic Ehlers–Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare Dis 2013;8:58
  • USchwarze, MAtkinson, GGHoffman, et al. Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Human Genet 2000;66:1757-65
  • RJWenstrup, JBFlorer, MCWilling, et al. COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Human Genet 2000;66:1766-76
  • FMalfait, PCoucke, SSymoens, et al. The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum Mutat 2005;25:28-37
  • SSymoens, FMalfait, MRenard, et al. COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers-Danlos syndrome. Hum Mutat 2009;30:E395-403
  • ADe Paepe, LNuytinck, IHausser, et al. Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Human Genet 1997;60:547-54
  • RJWenstrup, GTLangland, MCWilling, et al. A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet 1996;5:1733-6
  • RDalgleish. The human collagen mutation database 1998. Nucleic Acids Res 1998;26:253-5
  • RJWenstrup, JBFlorer, JMDavidson, et al. Murine model of the Ehlers-Danlos syndrome. col5a1 haploinsufficiency disrupts collagen fibril assembly at multiple stages. J Biol Chem 2006;281:12888-95
  • RJWenstrup, SMSmith, JBFlorer, et al. Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem 2011;286:20455-65
  • MSun, SChen, SMAdams, et al. Collagen V is a dominant regulator of collagen fibrillogenesis: dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. J Cell Sci 2011;124:4096-105
  • FHSilver, IHorvath, DJForan. Viscoelasticity of the vessel wall: the role of collagen and elastic fibers. Crit Rev Biomed Eng 2001;29:279-301
  • USchwarze, WISchievink, EPetty, et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Human Genet 2001;69:989-1001
  • DFLeistritz, MGPepin, USchwarze, et al. COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet Med 2011;13:717-22
  • SPalmeri, FMari, IMeloni, et al. Neurological presentation of Ehlers-Danlos syndrome type IV in a family with parental mosaicism. Clin Genet 2003;63:510-15
  • DMMilewicz, AMWitz, ACSmith, et al. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring. Am J Human Genet 1993;53:62-70
  • SKontusaari, GTromp, HKuivaniemi, et al. Substitution of aspartate for glycine 1018 in the type III procollagen (COL3A1) gene causes type IV Ehlers-Danlos syndrome: the mutated allele is present in most blood leukocytes of the asymptomatic and mosaic mother. Am J Human Genet 1992;51:497-507
  • AJRichards, PNWard, PNarcisi, et al. A single base mutation in the gene for type III collagen (COL3A1) converts glycine 847 to glutamic acid in a family with Ehlers-Danlos syndrome type IV. An unaffected family member is mosaic for the mutation. Hum Genet 1992;89:414-18
  • K-TOng, JPerdu, JDe Backer, et al. Effect of celiprolol on prevention of cardiovascular events in vascular Ehlers-Danlos syndrome: a prospective randomised, open, blinded-endpoints trial. Lancet 2010;376:1476-84
  • MKlaassens, EReinstein, YHilhorst-Hofstee, et al. Ehlers-Danlos arthrochalasia type (VIIA-B) – expanding the phenotype: from prenatal life through adulthood. Clin Genet 2012;82:121-30
  • AColige, ALSieron, SWLi, et al. Human Ehlers-Danlos syndrome type VII C and bovine dermatosparaxis are caused by mutations in the procollagen I N-proteinase gene. Am J Human Genet 1999;65:308-17
  • FMalfait, PDe Coster, IHausser, et al. The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am J Med Genet 2004;131A:18-28
  • WACabral, EMakareeva, ADLetocha, et al. Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Hum Mutat 2007;28:396-405
  • FMalfait, SSymoens, NGoemans, et al. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis 2013;8:78
  • USchwarze, R-IHata, VAMcKusick, et al. Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Human Genet 2004;74:917-30
  • FMalfait, SSymoens, PCoucke, et al. Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J Med Genet 2006;43:e36
  • ACNicholls, GOsse, HGSchloon, et al. The clinical features of homozygous alpha 2(I) collagen deficient osteogenesis imperfecta. J Med Genet 1984;21:257-62
  • FMalfait, SSymoens, JDe Backer, et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat 2007;28:387-95
  • SMKrane, SRPinnell, RWErbe. Lysyl-protocollagen hydroxylase deficiency in fibroblasts from siblings with hydroxylysine-deficient collagen. Proc Natl Acad Sci USA 1972;69:2899-903
  • SRPinnell, SMKrane, JEKenzora, et al. A heritable disorder of connective tissue. N Engl J Med 1972;286:1013-20
  • BSteinmann, RGitzelmann, AVogel, et al. Ehlers-Danlos syndrome in two siblings with deficient lysyl hydroxylase activity in cultured skin fibroblasts but only mild hydroxylysine deficit in skin. Helv Paediatr Acta 1975;30:255-74
  • HNYeowell, LCWalker. Mutations in the lysyl hydroxylase 1 gene that result in enzyme deficiency and the clinical phenotype of Ehlers-Danlos syndrome type VI. Mol Genet Metab 2000;71:212-24
  • CGiunta, ARandolph, BSteinmann. Mutation analysis of the PLOD1 gene: an efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA). Mol Genet Metab 2005;86:269-76
  • TFukada, NCivic, TFuruichi, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 2008;3:e3642
  • CGiunta, NHElçioglu, BAlbrecht, et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome – an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 2008;82:1290-305
  • B-HBin, TFukada, THosaka, et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 2011;286:40255-65
  • B-HBin, SHojyo, THosaka, et al. Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med 2014;6:1028-42
  • JJeong, JMWalker, FWang, et al. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci USA 2012;109:E3530-8
  • MBaumann, CGiunta, BKrabichler, et al. Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 2012;90:201-16
  • MLMurray, MYang, CFauth, et al. FKBP14-related Ehlers-Danlos syndrome: expansion of the phenotype to include vascular complications. Am J Med Genet A 2014;164A(7):1750-5
  • AAAldeeri, AMAlazami, HHijazi, et al. Excessively redundant umbilical skin as a potential early clinical feature of Morquio syndrome and FKBP14-related Ehlers-Danlos syndrome. Clin Genet 2014;86:469-72
  • YIshikawa, HPBächinger. A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J Biol Chem 2014;289:18189-201
  • EMMBurkitt Wright, LFPorter, HLSpencer, et al. Brittle cornea syndrome: recognition, molecular diagnosis and management. Orphanet J Rare Dis 2013;8:68
  • AAbu, MFrydman, DMarek, et al. Deleterious mutations in the Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet 2008;82:1217-22
  • EMMBurkitt Wright, HLSpencer, SBDaly, et al. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet 2011;88:767-77
  • YLu, DPDimasi, PGHysi, et al. Common genetic variants near the Brittle Cornea Syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet 2010;6:e1000947
  • ENVithana, TAung, CCKhor, et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 2011;20:649-58
  • MUlmer, JLi, BLYaspan, et al. Genome-wide analysis of central corneal thickness in primary open-angle glaucoma cases in the NEIGHBOR and GLAUGEN consortia. Invest Ophthalmol Vis Sci 2012;53:4468-74
  • VVitart, GBencić, CHayward, et al. New loci associated with central cornea thickness include COL5A1, AKAP13 and AVGR8. Hum Mol Genet 2010;19:4304-11
  • RHoehn, TZeller, VJMVerhoeven, et al. Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet 2012;131:1783-93
  • JLechner, LFPorter, ARice, et al. Enrichment of pathogenic alleles in the brittle cornea gene, ZNF469, in keratoconus. Hum Mol Genet 2014;23:5527-35
  • ZDuan, REPerson, H-HLee, et al. Epigenetic regulation of protein-coding and microRNA genes by the Gfi1-interacting tumor suppressor PRDM5. Mol Cell Biol 2007;27:6889-902
  • GGGalli, KHonnens de Lichtenberg, MCarrara, et al. Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone. PLoS Genet 2012;8:e1002711
  • QDeng, SHuang. PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 2004;23:4903-10
  • YWatanabe, MToyota, YKondo, et al. PRDM5 Identified as a Target of Epigenetic Silencing in Colorectal and Gastric Cancer. Clin Cancer Res 2007;13:4786-94
  • YWatanabe, HSKim, RJCastoro, et al. Sensitive and specific detection of early gastric cancer with DNA methylation analysis of gastric washes. Gastroenterology 2009;136:2149-58
  • H-YCheng, X-WChen, LCheng, et al. DNA methylation and carcinogenesis of PRDM5 in cervical cancer. J Cancer Res Clin Oncol 2010;136:1821-5
  • NMeani, FPezzimenti, GDeflorian, et al. The tumor suppressor PRDM5 regulates wnt signaling at early stages of zebrafish development. PLoS One 2009;4:e4273
  • KPrydz, KTDalen. Synthesis and sorting of proteoglycans. J Cell Sci 2000;113(Pt 2):193-205
  • EQuentin, AGladen, LRodén, et al. A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci USA 1990;87:1342-6
  • HKresse, SRosthøj, EQuentin, et al. Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid. Am J Human Genet 1987;41:436-53
  • FCartault, PMunier, M-LJacquemont, et al. Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes larsen of reunion island syndrome. Eur J Hum Genet 2015;23(1):49-53
  • MHGuo, JStoler, JLui, et al. Redefining the progeroid form of ehlers-danlos syndrome: report of the fourth patient with B4GALT7deficiency and review of the literature. Am J Med Genet A 2013;161A(10):2519-27
  • MFaiyaz-Ul-Haque, SHEZaidi, MAl-Ali, et al. A novel missense mutation in the galactosyltransferase-I (B4GALT7) gene in a family exhibiting facioskeletal anomalies and Ehlers-Danlos syndrome resembling the progeroid type. Am J Med Genet A 2004;128A:39-45
  • TOkajima, SFukumoto, KFurukawa, et al. Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J Biol Chem 1999;274:28841-4
  • RAlmeida, SBLevery, UMandel, et al. Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J Biol Chem 1999;274:26165-71
  • FMalfait, AKariminejad, TVan Damme, et al. Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder. Am J Hum Genet 2013;92:935-45
  • MNakajima, SMizumoto, NMiyake, et al. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 2013;92:927-34
  • KShimizu, NOkamoto, NMiyake, et al. Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients. Am J Med Genet A 2011;155A:1949-58
  • FMalfait, DSyx, PVlummens, et al. Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat 2010;31:1233-9
  • TMüller, SMizumoto, ISuresh, et al. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet 2013;22:3761-72
  • ARJanecke, JUBaenziger, TMüller, et al. Loss of dermatan-4-sulfotransferase 1 (D4ST1/CHST14) function represents the first dermatan sulfate biosynthesis defect, “dermatan sulfate-deficient adducted thumb-clubfoot syndrome”. Hum Mutat 2011;32:484-5
  • TKosho. Discovery and delineation of dermatan 4-O-sulfotransferase-1 (D4ST1)-deficient Ehlers-Danlos syndrome. In: Naoki Oiso (editor) Current genetics in dermatology. InTech, Rijeka, Croatia 2013
  • GHBurch, YGong, WLiu, et al. Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 1997;17:104-8
  • JSchalkwijk, MCZweers, PMSteijlen, et al. A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 2001;345:1167-75
  • MCZweers, JBristow, PMSteijlen, et al. Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Human Genet 2003;73:214-17
  • NCVoermans, GJJenniskens, BCHamel, et al. Ehlers-Danlos syndrome due to tenascin-X deficiency: muscle weakness and contractures support overlap with collagen VI myopathies. Am J Med Genet A 2007;143A:2215-19
  • IPénisson-Besnier, VAllamand, PBeurrier, et al. Compound heterozygous mutations of the TNXB gene cause primary myopathy. Neuromuscul Disord 2013;23:664-9
  • TMinamitani, HAriga, K-IMatsumoto. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 2004;297:49-60
  • CGBönnemann. The collagen VI-related myopathies: muscle meets its matrix. Nat Rev Neurol 2011;7:379-90
  • YZou, DZwolanek, YIzu, et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum Mol Genet 2014;23:2339-52
  • DHicks, GTFarsani, SLaval, et al. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Hum Mol Genet 2014;23:2353-63
  • BLLoeys, JChen, ERNeptune, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 2005;37:275-81
  • VCarmignac, JThevenon, LAdès, et al. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome. Am J Hum Genet 2012;91:950-7
  • SMPyott, TTTran, DFLeistritz, et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 2013;92:590-7
  • MELindsay, HCDietz. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 2011;473:308-16
  • KMöberg, SDe Nobele, DDevos, et al. The Ghent Marfan Trial – a randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with beta-blockers. Int J Cardiol 2012;157:354-8
  • RVLacro, HCDietz, LASleeper, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med 2014;371:2061-71
  • MGroenink, AWHartog den, RFranken, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J 2013;34:3491-500
  • TSLisse, FThiele, HFuchs, et al. ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 2008;4:e7
  • PGrumati, LColetto, PSabatelli, et al. Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 2010;16:1313-20
  • LSMurray, YLu, ATaggart, et al. Chemical chaperone treatment reduces intracellular accumulation of mutant collagen IV and ameliorates the cellular phenotype of a COL4A2 mutation that causes haemorrhagic stroke. Hum Mol Genet 2014;23:283-92
  • SSymoens, FMalfait, PVlummens, et al. A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement. PLoS One 2011;6:e20121
  • RMorissette, FSchoenhoff, ZXu, et al. Transforming growth factor-beta and inflammation in vascular (type IV) Ehlers-Danlos syndrome. Circ Cardiovasc Genet 2014;7:80-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.