94
Views
0
CrossRef citations to date
0
Altmetric
Review

Globin gene regulation for treating β-thalassemias: progress, obstacles and future

, MD, , MD, , MD & , MD PhD FRCP
Pages 1047-1062 | Published online: 24 Aug 2015

Bibliography

  • Weatherall DJ, Clegg JB. Thalassemia–a global public health problem. Nat Med 1996;2(8):847-9
  • Angelucci E, Matthes-Martin S, Baronciani D, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica 2014;99(5):811-20
  • King A, Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood 2014;123(20):3089-94
  • Kharbanda S, Smith AR, Hutchinson SK, et al. Unrelated donor allogeneic hematopoietic stem cell transplantation for patients with hemoglobinopathies using a reduced-intensity conditioning regimen and third-party mesenchymal stromal. Biol Blood Marrow Transplant 2014;20(4):581-6
  • Borgna-Pignatti C. The life of patients with thalassemia major. Haematologica 2010;95(3):345-8
  • Rigano P, Pecoraro A, Calzolari R, et al. Desensitization to hydroxycarbamide following long-term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. Br J Haematol 2010;151(5):509-15
  • Modell B, Khan M, Darlison M, et al. Improved survival of thalassaemia major in the uk and relation to t2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2008;10:42
  • Musallam KM, Taher AT, Cappellini MD, Sankaran VG. Clinical experience with fetal hemoglobin induction therapy in patients with beta-thalassemia. Blood 2013;121(12):2199-212
  • Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: An increasing global health problem. Bull World Health Organ 2001;79(8):704-12
  • Thomas ED, Buckner CD, Sanders JE, et al. Marrow transplantation for thalassaemia. Lancet 1982;2(8292):227-9
  • Lucarelli G, Clift RA, Galimberti M, et al. Bone marrow transplantation in adult thalassemic patients. Blood 1999;93(4):1164-7
  • Lucarelli G, Galimberti M, Giardini C, et al. Bone marrow transplantation in thalassemia. The experience of pesaro. Ann N Y Acad Sci 1998;850:270-5
  • Lucarelli G, Galimberti M, Polchi P, et al. Marrow transplantation in patients with advanced thalassemia. N Engl J Med 1987;316(17):1050-5
  • Lucarelli G, Polchi P, Izzi T, et al. Allogeneic marrow transplantation for thalassemia. Exp Hematol 1984;12(8):676-81
  • Lucarelli G, Polchi P, Galimberti M, et al. Marrow transplantation for thalassaemia following busulphan and cyclophosphamide. Lancet 1985;1(8442):1355-7
  • La Nasa G, Giardini C, Argiolu F, et al. Unrelated donor bone marrow transplantation for thalassemia: the effect of extended haplotypes. Blood 2002;99(12):4350-6
  • Bernardo ME, Piras E, Vacca A, et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood 2012;120(2):473-6
  • Hongeng S, Pakakasama S, Chaisiripoomkere W, et al. Outcome of transplantation with unrelated donor bone marrow in children with severe thalassaemia. Bone Marrow Transplant 2004;33(4):377-9
  • Fleischhauer K, Locatelli F, Zecca M, et al. Graft rejection after unrelated donor hematopoietic stem cell transplantation for thalassemia is associated with nonpermissive hla-dpb1 disparity in host-versus-graft direction. Blood 2006;107(7):2984-92
  • Gluckman E, Locatelli F. Umbilical cord blood transplants. Curr Opin Hematol 2000;7(6):353-7
  • Issaragrisil S, Visuthisakchai S, Suvatte V, et al. Brief report: Transplantation of cord-blood stem cells into a patient with severe thalassemia. N Engl J Med 1995;332(6):367-9
  • Lau YL, Ma ES, Ha SY, et al. Sibling hla-matched cord blood transplant for beta-thalassemia: Report of two cases, expression of fetal hemoglobin, and review of the literature. J Pediatr Hematol Oncol 1998;20(5):477-81
  • Brichard B, Vermylen C, Ninane J, Cornu G. Persistence of fetal hemoglobin production after successful transplantation of cord blood stem cells in a patient with sickle cell anemia. J Pediatr 1996;128(2):241-3
  • Locatelli F, Rocha V, Reed W, et al. Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood 2003;101(6):2137-43
  • Wagner JE. Umbilical cord blood stem cell transplantation. Am J Pediatr Hematol Oncol 1993;15(2):169-74
  • Ruggeri A, Eapen M, Scaravadou A, et al. Umbilical cord blood transplantation for children with thalassemia and sickle cell disease. Biol Blood Marrow Transplant 2011;17(9):1375-82
  • Jaing TH, Hung IJ, Yang CP, et al. Unrelated cord blood transplantation for thalassaemia: A single-institution experience of 35 patients. Bone Marrow Transplant 2012;47(1):33-9
  • Sodani P, Isgro A, Gaziev J, et al. Purified t-depleted, cd34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood 2010;115(6):1296-302
  • Gaziev D, Galimberti M, Lucarelli G, et al. Bone marrow transplantation from alternative donors for thalassemia: Hla-phenotypically identical relative and hla-nonidentical sibling or parent transplants. Bone Marrow Transplant 2000;25(8):815-21
  • Breda L, Casu C, Gardenghi S, et al. Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients. PLoS One 2012;7(3):e32345
  • Deisseroth A, Nienhuis A, Lawrence J, et al. Chromosomal localization of human beta globin gene on human chromosome 11 in somatic cell hybrids. Proc Natl Acad Sci USA 1978;75(3):1456-60
  • Scott AF, Phillips JA3rdMigeon BR. DNA restriction endonuclease analysis for localization of human beta- and delta-globin genes on chromosome 11. Proc Natl Acad Sci USA 1979;76(9):4563-5
  • Ginder GD. Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015;165(1):115-25
  • Whitelaw E, Tsai SF, Hogben P, Orkin SH. Regulated expression of globin chains and the erythroid transcription factor gata-1 during erythropoiesis in the developing mouse. Mol Cell Biol 1990;10(12):6596-606
  • Fathallah H, Taher A, Bazarbachi A, Atweh GF. Differences in response to fetal hemoglobin induction therapy in beta-thalassemia and sickle cell disease. Blood Cells Mol Dis 2009;43(1):58-62
  • Mabaera R, Greene MR, Richardson CA, et al. Neither DNA hypomethylation nor changes in the kinetics of erythroid differentiation explain 5-azacytidine’s ability to induce human fetal hemoglobin. Blood 2008;111(1):411-20
  • Sankaran VG, Xu J, Orkin SH. Advances in the understanding of haemoglobin switching. Br J Haematol 2010;149(2):181-94
  • Perrine SP, Pace BS, Faller DV. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Hematol Oncol Clin North Am 2014;28(2):233-48
  • Charache S, Clegg JB, Weatherall DJ. The negro variety of hereditary persistence of fetal haemoglobin is a mild form of thalassaemia. Br J Haematol 1976;34(4):527-34
  • Voskaridou E, Christoulas D, Bilalis A, et al. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: Results of a 17-year, single-center trial (lashs). Blood 2010;115(12):2354-63
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11a. Science 2008;322(5909):1839-42
  • Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 2013;3(1):a011643
  • Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction. Hematology Am Soc Hematol Educ Program 2011;2011:459-65
  • Lloyd JA, Krakowsky JM, Crable SC, Lingrel JB. Human gamma- to beta-globin gene switching using a mini construct in transgenic mice. Mol Cell Biol 1992;12(4):1561-7
  • Behringer RR, Ryan TM, Palmiter RD, et al. Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev 1990;4(3):380-9
  • Deng W, Rupon JW, Krivega I, et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014;158(4):849-60
  • Shen W, Liu DP, Liang CC. The regulatory network controlling beta-globin gene switching. Mol Biol Rep 2001;28(3):175-83
  • Forrester WC, Epner E, Driscoll MC, et al. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 1990;4(10):1637-49
  • Kioussis D, Vanin E, deLange T, et al. Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 1983;306(5944):662-6
  • Curtin P, Pirastu M, Kan YW, et al. A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. J Clin Invest 1985;76(4):1554-8
  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 1987;51(6):975-85
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows bcl11a associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA 2008;105(5):1620-5
  • Xu J, Sankaran VG, Ni M, et al. Transcriptional silencing of {gamma}-globin by bcl11a involves long-range interactions and cooperation with sox6. Gen Dev 2010;24(8):783-98
  • Jawaid K, Wahlberg K, Thein SL, Best S. Binding patterns of bcl11a in the globin and gata1 loci and characterization of the bcl11a fetal hemoglobin locus. Blood Cells Mol Dis 2010;45(2):140-6
  • Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science 2011;334(6058):993-6
  • Musallam KM, Sankaran VG, Cappellini MD, et al. Fetal hemoglobin levels and morbidity in untransfused patients with beta-thalassemia intermedia. Blood 2012;119(2):364-7
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor klf1 causes hereditary persistence of fetal hemoglobin. Nat Genet 2010;42(9):801-5
  • Satta S, Perseu L, Moi P, et al. Compound heterozygosity for klf1 mutations associated with remarkable increase of fetal hemoglobin and red cell protoporphyrin. Haematologica 2011;96(5):767-70
  • Liu D, Zhang X, Yu L, et al. Klf1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of beta-thalassemia. Blood 2014;124(5):803-11
  • Zhou D, Liu K, Sun CW, et al. Klf1 regulates bcl11a expression and gamma- to beta-globin gene switching. Nat Genet 2010;42(9):742-4
  • Krivega I, Dale RK, Dean A. Role of ldb1 in the transition from chromatin looping to transcription activation. Gen Dev 2014;28(12):1278-90
  • Song SH, Kim A, Ragoczy T, et al. Multiple functions of ldb1 required for beta-globin activation during erythroid differentiation. Blood 2010;116(13):2356-64
  • Wadman IA, Osada H, Grutz GG, et al. The lim-only protein lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the tal1, e47, gata-1 and ldb1/nli proteins. EMBO J 1997;16(11):3145-57
  • Deng W, Lee J, Wang H, et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 2012;149(6):1233-44
  • Chandrakasan S, Malik P. Gene therapy for hemoglobinopathies: The state of the field and the future. Hematol Oncol Clin North Am 2014;28(2):199-216
  • Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 2011;12(5):301-15
  • Riviere I, Dunbar CE, Sadelain M. Hematopoietic stem cell engineering at a crossroads. Blood 2012;119(5):1107-16
  • Sadelain M, Boulad F, Galanello R, et al. Therapeutic options for patients with severe beta-thalassemia: The need for globin gene therapy. Hum Gene Ther 2007;18(1):1-9
  • Verma IM, Somia N. Gene therapy -- promises, problems and prospects. Nature 1997;389(6648):239-42
  • Mulligan RC. The basic science of gene therapy. Science 1993;260(5110):926-32
  • Raty J, Pikkarainen J, Wirth T, Yla-Herttuala S. Gene therapy: The first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol 2008;1(1):13-23
  • Hacein-Bey-Abina S, Pai SY, Gaspar HB, et al. A modified gamma-retrovirus vector for x-linked severe combined immunodeficiency. N Engl J Med 2014;371(15):1407-17
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4(5):346-58
  • Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ada- scid: Initial trial results after 4 years. Science 1995;270(5235):475-80
  • Luciw PA, Leung NJ. Mechanisms of retrovirus replication. In: The retroviridae. Springer 1992;159-298
  • Dzierzak EA, Papayannopoulou T, Mulligan RC. Lineage-specific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 1988;331(6151):35-41
  • Karlsson S, Bodine DM, Perry L, et al. Expression of the human beta-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice. Proc Natl Acad Sci USA 1988;85(16):6062-6
  • Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: Past, present and future. Oncogene 2005;24(52):7656-72
  • Ranzani M, Annunziato S, Adams DJ, Montini E. Cancer gene discovery: Exploiting insertional mutagenesis. Mol Cancer Res 2013;11(10):1141-58
  • Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of scid-x1. J Clin Invest 2008;118(9):3132-42
  • Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to evi1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010;16(2):198-204
  • Avedillo Diez I, Zychlinski D, Coci EG, et al. Development of novel efficient sin vectors with improved safety features for wiskott-aldrich syndrome stem cell based gene therapy. Mol Pharm 2011;8(5):1525-37
  • Boerkoel CF, Kung HJ. Transcriptional interaction between retroviral long terminal repeats (ltrs): Mechanism of 5’ ltr suppression and 3’ ltr promoter activation of c-myc in avian b-cell lymphomas. J Virol 1992;66(8):4814-23
  • Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol 2012;24(5):580-4
  • Hargrove PW, Kepes S, Hanawa H, et al. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Molecular Ther 2008;16(3):525-33
  • Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996;93(21):11382-8
  • May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 2000;406(6791):82-6
  • Kvaratskhelia M, Sharma A, Larue RC, et al. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 2014;42(16):10209-25
  • Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of hsc gene therapy. J Clin Invest 2009;119(4):964-75
  • Mitchell RS, Beitzel BF, Schroder AR, et al. Retroviral DNA integration: Aslv, hiv, and mlv show distinct target site preferences. PLoS Biol 2004;2(8):E234
  • Beard BC, Dickerson D, Beebe K, et al. Comparison of hiv-derived lentiviral and mlv-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther 2007;15(7):1356-65
  • De Palma M, Montini E, Santoni de Sio FR, et al. Promoter trapping reveals significant differences in integration site selection between mlv and hiv vectors in primary hematopoietic cells. Blood 2005;105(6):2307-15
  • Montini E, Cesana D, Schmidt M, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006;24(6):687-96
  • Arumugam PI, Scholes J, Perelman N, et al. Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (chs4) insulator element. Mol Ther 2007;15(10):1863-71
  • Miyoshi H, Blomer U, Takahashi M, et al. Development of a self-inactivating lentivirus vector. J Virol 1998;72(10):8150-7
  • Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996;272(5259):263-7
  • Uchida N, Sutton RE, Friera AM, et al. Hiv, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated g0/g1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998;95(20):11939-44
  • Arumugam P, Malik P. Genetic therapy for beta-thalassemia: From the bench to the bedside. Hematology Am Soc Hematol Educ Program 2010;2010:445-50
  • Rivella S, May C, Chadburn A, et al. A novel murine model of cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood 2003;101(8):2932-9
  • Persons DA, Hargrove PW, Allay ER, et al. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood 2003;101(6):2175-83
  • Puthenveetil G, Scholes J, Carbonell D, et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 2004;104(12):3445-53
  • Hanawa H, Hargrove PW, Kepes S, et al. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood 2004;104(8):2281-90
  • Lisowski L, Sadelain M. Locus control region elements hs1 and hs4 enhance the therapeutic efficacy of globin gene transfer in beta-thalassemic mice. Blood 2007;110(13):4175-8
  • Arumugam PI, Urbinati F, Velu CS, et al. The 3’ region of the chicken hypersensitive site-4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 2009;4(9):e6995
  • Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 2002;99(10):6883-8
  • Gaszner M, Felsenfeld G. Insulators: Exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006;7(9):703-13
  • Urbinati F, Arumugam P, Higashimoto T, et al. Mechanism of reduction in titers from lentivirus vectors carrying large inserts in the 3’ltr. Mol Ther 2009;17(9):1527-36
  • Emery DW, Yannaki E, Tubb J, et al. Development of virus vectors for gene therapy of beta chain hemoglobinopathies: Flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo. Blood 2002;100(6):2012-19
  • Miccio A, Cesari R, Lotti F, et al. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci USA 2008;105(30):10547-52
  • Roselli EA, Mezzadra R, Frittoli MC, et al. Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients. EMBO Mol Med 2010;2(8):315-28
  • Wang CX, Sather BD, Wang X, et al. Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 2014;124(6):913-23
  • Phaltane R, Lachmann N, Brennig S, et al. Lentiviral mgmt(p140k)-mediated in vivo selection employing a ubiquitous chromatin opening element (a2ucoe) linked to a cellular promoter. Biomaterials 2014;35(25):7204-13
  • Ackermann M, Lachmann N, Hartung S, et al. Promoter and lineage independent anti-silencing activity of the a2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials 2014;35(5):1531-42
  • Dighe N, Khoury M, Mattar C, et al. Long-term reproducible expression in human fetal liver hematopoietic stem cells with a ucoe-based lentiviral vector. PLoS One 2014;9(8):e104805
  • Boulad F, Wang X, Qu J, et al. Safe mobilization of cd34+ cells in adults with beta-thalassemia and validation of effective globin gene transfer for clinical investigation. Blood 2014;123(10):1483-6
  • Cavazzana-Calvo M, Payen E, Negre O, et al. Transfusion independence and hmga2 activation after gene therapy of human beta-thalassaemia. Nature 2010;467(7313):318-22
  • Bank A, Dorazio R, Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci 2005;1054:308-16
  • Available from: www.clinicaltrials.gov
  • Sadelain M, Riviere I, Wang X, et al. Strategy for a multicenter phase i clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci 2010;1202:52-8
  • Negre O, Bartholomae C, Beuzard Y, et al. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of beta-thalassemia and sickle cell disease. Curr Gene Ther 2015;15(1):64-81
  • Trobridge GD. Foamy virus vectors for gene transfer. Expert Opin Biol Ther 2009;9(11):1427-36
  • Morianos I, Siapati EK, Pongas G, Vassilopoulos G. Comparative analysis of fv vectors with human alpha- or beta-globin gene regulatory elements for the correction of beta-thalassemia. Gene Ther 2012;19(3):303-11
  • Tebas P, Stein D, Tang WW, et al. Gene editing of ccr5 in autologous cd4 t cells of persons infected with hiv. N Engl J Med 2014;370(10):901-10
  • Genovese P, Schiroli G, Escobar G, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 2014;510(7504):235-40
  • Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to ccr5 control hiv-1 in vivo. Nature Biotechnol 2010;28(8):839-47
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of bcl11a subject to genetic variation determines fetal hemoglobin level. Science 2013;342(6155):253-7
  • Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188(4):773-82
  • Joung JK, Sander JD. Talens: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14(1):49-55
  • Ma N, Shan YL, Liao BJ, et al. Factor induced reprogramming and zinc finger nuclease aided gene targeting cause different genome instability in beta-thalassemia ipscs. J Biol Chem 2015;290(19):12079-89
  • Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005;435(7042):646-51
  • Bedell VM, Wang Y, Campbell JM, et al. 2nd, Tan W, Penheiter SG, Ma AC, Leung AY, Fahrenkrug SC, et al. In vivo genome editing using a high-efficiency talen system. Nature 2012;491(7422):114-18
  • Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the cas9 rna-guided endonuclease. Nat Biotechnol 2013;31(3):230-2
  • Wilber A, Tschulena U, Hargrove PW, et al. A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 2010;115(15):3033-41
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using crispr/cas systems. Science 2013;339(6121):819-23
  • Ma N, Liao B, Zhang H, et al. Transcription activator-like effector nuclease (talen)-mediated gene correction in integration-free beta-thalassemia induced pluripotent stem cells. J Biol Chem 2013;288(48):34671-9
  • He L, Hannon GJ. Micrornas: Small rnas with a big role in gene regulation. Nat Rev Genet 2004;5(7):522-31
  • Lee YT, de Vasconcellos JF, Yuan J, et al. Lin28b-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood 2013;122(6):1034-41
  • Lulli V, Romania P, Morsilli O, et al. Microrna-486-3p regulates gamma-globin expression in human erythroid cells by directly modulating bcl11a. PLoS One 2013;8(4):e60436
  • Sankaran VG, Menne TF, Scepanovic D, et al. Microrna-15a and -16-1 act via myb to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci USA 2011;108(4):1519-24
  • Ma Y, Wang B, Jiang F, et al. A feedback loop consisting of microrna 23a/27a and the beta-like globin suppressors klf3 and sp1 regulates globin gene expression. Mol Cell Biol 2013;33(20):3994-4007
  • Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of beta-thalassemia. Expert Opin Biol Ther 2014;14(10):1443-54
  • Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood 2011;118(1):19-27
  • Oka M, Rodic N, Graddy J, et al. Cpg sites preferentially methylated by dnmt3a in vivo. J Biol Chem 2006;281(15):9901-8
  • Groudine M, Eisenman R, Weintraub H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 1981;292(5821):311-17
  • Jones PA, Taylor SM. Cellular differentiation, cytidine analogs and DNA methylation. Cell 1980;20(1):85-93
  • Ley TJ, DeSimone J, Anagnou NP, et al. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med 1982;307(24):1469-75
  • Lowrey CH, Nienhuis AW. Brief report: Treatment with azacitidine of patients with end-stage beta-thalassemia. N Engl J Med 1993;329(12):845-8
  • Dunbar C, Travis W, Kan YW, Nienhuis A. 5-azacytidine treatment in a beta (0)-thalassaemic patient unable to be transfused due to multiple alloantibodies. Br J Haematol 1989;72(3):467-8
  • Lal A, Vichinsky E. The role of fetal hemoglobin-enhancing agents in thalassemia. Semin Hematol 2004;41(4 Suppl 6):17-22
  • Ley TJ, Anagnou NP, Young NS, et al. 5-azacytidine for beta thalassaemia? Lancet 1983;1(8322):467
  • Humphries RK, Dover G, Young NS, et al. 5-azacytidine acts directly on both erythroid precursors and progenitors to increase production of fetal hemoglobin. J Clin Invest 1985;75(2):547-57
  • Ley TJ, DeSimone J, Noguchi CT, et al. 5-azacytidine increases gamma-globin synthesis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood 1983;62(2):370-80
  • Olivieri NF, Saunthararajah Y, Thayalasuthan V, et al. A pilot study of subcutaneous decitabine in beta-thalassemia intermedia. Blood 2011;118(10):2708-11
  • McGann PT, Ware RE. Hydroxyurea for sickle cell anemia: What have we learned and what questions still remain? Curr Opin Hematol 2011;18(3):158-65
  • Italia KY, Jijina FJ, Merchant R, et al. Response to hydroxyurea in beta thalassemia major and intermedia: experience in western India. Clin Chim Acta 2009;407(1-2):10-15
  • Charache S. Mechanism of action of hydroxyurea in the management of sickle cell anemia in adults. Semin Hematol 1997;34(3 Suppl 3):15-21
  • Felice AE, Borg J, Pizzuto M, et al. A review of cis-trans interplay between DNA sequences 5’ to the (g)gamma- and beta-globin genes among hb f-malta-i heterozygotes/homozygotes and beta-thalassemia homozygotes/compound heterozygotes, and the effects of hydroxyurea on the hb f/f-erythrocyte; the need for large multicenter trials. Hemoglobin 2007;31(2):279-88
  • Perrine SP, Miller BA, Faller DV, et al. Sodium butyrate enhances fetal globin gene expression in erythroid progenitors of patients with hb ss and beta thalassemia. Blood 1989;74(1):454-9
  • Perrine SP, Olivieri NF, Faller DV, et al. Butyrate derivatives. New agents for stimulating fetal globin production in the beta-globin disorders. Am J Pediatr Hematol Oncol 1994;16(1):67-71
  • Perrine SP, Ginder GD, Faller DV, et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med 1993;328(2):81-6
  • Sher GD, Ginder GD, Little J, et al. Extended therapy with intravenous arginine butyrate in patients with beta-hemoglobinopathies. N Engl J Med 1995;332(24):1606-10
  • Collins AF, Pearson HA, Giardina P, et al. Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: A clinical trial. Blood 1995;85(1):43-9
  • Domenica Cappellini M, Graziadei G, Ciceri L, et al. Oral isobutyramide therapy in patients with thalassemia intermedia: Results of a phase ii open study. Blood Cells Mol Dis 2000;26(1):105-11
  • Reich S, Buhrer C, Henze G, et al. Oral isobutyramide reduces transfusion requirements in some patients with homozygous beta-thalassemia. Blood 2000;96(10):3357-63
  • Fucharoen S, Inati A, Siritanaratku N, et al. A randomized phase i/ii trial of hqk-1001, an oral fetal globin gene inducer, in beta-thalassaemia intermedia and hbe/beta-thalassaemia. Br J Haematol 2013;161(4):587-93
  • Inati A, Kahale M, Perrine SP, et al. A phase 2 study of hqk-1001, an oral fetal haemoglobin inducer, in beta-thalassaemia intermedia. Br J Haematol 2014;164(3):456-8
  • Patthamalai P, Fuchareon S, Chaneiam N, et al. A phase 2 trial of hqk-1001 in hbe-beta thalassemia demonstrates hbf induction and reduced anemia. Blood 2014;123(12):1956-7
  • Touzot F, Hacein-Bey-Abina S, Fischer A, Cavazzana M. Gene therapy for inherited immunodeficiency. Expert Opin Biol Ther 2014;14(6):789-98
  • Mavilio F. Gene therapies need new development models. Nature 2012;490(7418):7
  • Groth AC, Liu M, Wang H, et al. Identification and characterization of enhancer-blocking insulators to reduce retroviral vector genotoxicity. PLoS One 2013;8(10):e76528
  • Leboulch P, Huang GM, Humphries RK, et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J 1994;13(13):3065-76
  • Sadelain M, Wang CH, Antoniou M, et al. Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc Natl Acad Sci USA 1995;92(15):6728-32
  • Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 2001;294(5550):2368-71
  • Imren S, Payen E, Westerman KA, et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc Natl Acad Sci USA 2002;99(22):14380-5
  • Imren S, Fabry ME, Westerman KA, et al. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 2004;114(7):953-62
  • Levasseur DN, Ryan TM, Pawlik KM, Townes TM. Correction of a mouse model of sickle cell disease: Lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood 2003;102(13):4312-19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.