168
Views
7
CrossRef citations to date
0
Altmetric
Theme: Sarcoma - Review

Senescence bypass in mesenchymal stem cells: a potential pathogenesis and implications of pro-senescence therapy in sarcomas

&
Pages 983-996 | Published online: 10 Jan 2014

References

  • de Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).
  • Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).
  • Garcia-Castro J, Trigueros C, Madrenas J et al. Mesenchymal stem cells and their use as cell replacement therapy and disease modeling tool. J. Cell Mol. Med. 12, 2552–2565 (2008).
  • Mackall CL, Meltzer PS, Helman LJ. Focus on sarcomas. Cancer Cell 2(3), 175–178 (2002).
  • Mohseny AB, Hogendoorn PC. Mesenchymal tumors: when stem cells go mad. Stem Cells 29, 397–403 (2011).
  • Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat. Rev. Cancer 3, 685–694 (2003).
  • Skubitz KM, D’Adamo DR. Sarcoma. Mayo Clin. Proc. 82, 1409–1432 (2007).
  • Tolar J, Nauta AJ, Osborn MJ et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25, 371–379 (2007).
  • Rosland GV, Svendsen A, Torsvik A et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69, 5331–5339 (2009).
  • Tirode F, Laud-Duval K, Prieur A et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11, 421–429 (2007).
  • Tang N, Song WX, Luo J et al. Osteosarcoma development and stem cell differentiation. Clin. Orthop. Relat. Res. 466, 2114–2130 (2008).
  • Rodriguez R, Rubio R, Masip M et al. Loss of p52 induces tumorigenesis in p21-deficient mesenchymal stem cell. Neoplasia 11, 397–407 (2009).
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 25, 614–636 (1965).
  • Haley CR, Futcher AB, Greider CW. Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460 (1990).
  • Watson JD. Origin of concatemeric T7 DNA. Nat. Rev. Biol. 239, 197–201 (1972).
  • D’Adda di Fagagna F. Living on a break: Cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).
  • Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 100, 57–70 (2000).
  • Smith JR, Pereira-Smith OM. Replicative senescence: implications for in vivo aging and tumor suppression. Science 273(5271), 63–67 (1996).
  • Vergel M, Carnero A. Bypassing cellular senescence by genetic screening tools. Clin. Translat. Oncol. 12(6), 410–417 (2010).
  • Rubio D, Garcia S, Paz MF et al. Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS ONE 3(2), e1398 (2008).
  • D’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194–198 (2003).
  • Kiyono T, Foster SA, Koop JI et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).
  • Piper SL, Wang M, Yamamoto A et al. Inducible immortality in hTERT-human mesenchymal stem cells. J. Orthop. Res. 30, 1879–1885 (2012).
  • Chen Q, Fischer A, Reagan JD et al. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. 92, 4337–4341 (1995).
  • Di Micco R, Fumagalli M, Cicalese A et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119), 638–642 (2006).
  • Mallete FA, Gaumont-Leclerc MF, Ferbeyre G. The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev. 21(1), 43–48 (2007).
  • Chen Z, Trotman LC, Shaffer D et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).
  • Zhang W, Ji W, Yang L et al. Comparison of global DNA methylation profiles in replicative versus premature senescence. Life Sci. 83, 475–480 (2008).
  • Lee S, Park JR, Seo MS et al. Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Prolif. 42(6), 711–720 (2009).
  • Coppe JP, Patil CK, Rodier F et al. Senescence-associated secretory phenotype reveal cell-nonautonomous functions of oncogenic RAS and p53 tumor suppressor. PLoS Biol. 6(12), 2853–2868 (2008).
  • Acosta JC, O’Leghlen A, Banito A et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6), 1006–1018 (2008).
  • Zeng G, Millis AJ. Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp. Cell Res. 222(1), 150–156 (1996).
  • Kuilman T, Michaloglou C, Vredeveld LC et al. Oncogene-induced senescence related by an interleukin-dependent inflammatory network. Cell 133(6), 1019–1031 (2008).
  • Orjalo AV, Bhaumik D, Gengler B et al. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl Acad. Sci. USA 106(40), 17031–17036 (2009).
  • Pan L, Chen S, Weng C et al. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1(4), 458–469 (2007).
  • Mayack SR, Shadrach JL, Kim FS, Wagners AJ. Systemic signal regulate ageing and rejuvenation of blood stem cell niches. Nature 463(7280), 495–500 (2010).
  • Feldser DM, Greider CW. Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11, 461–469 (2007).
  • Cosme-Blanco W, Shen M-F, Lazar AJF et al. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 8, 497–503 (2007).
  • Braig M, Lee S, Loddenkemper C et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).
  • Sarkisian CJ, Keister BA, Stairs DB et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat. Cell Biol. 9, 483–505 (2007).
  • Ventura A, Kirsch DG, Mclaughlin ME et al. Restoration of p53 function leads to tumor regression in vivo. Nature 445, 661–665 (2007).
  • Xue W, Zender L, Miething C et al. Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).
  • Wu C-H, van Riggelen J, Yetil A et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007).
  • Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545 (2010).
  • Brack AS, Rando TA. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007).
  • Giangreco AM, Qin M, Pintar JE, Watt FM. Epidermal stem cells are retained in vivo throughout skin aging. Aging Cell 7, 250–259 (2008).
  • Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37, 961–976 (2005).
  • Koga H, Kasushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res. Rev. 10, 205–215 (2011).
  • Brack AS, Conboy MJ, Roy S et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).
  • Rittié L, Stoll SW, Kang S, Voorhees JJ, Fischer GJ. Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin. Aging Cell 8, 738–751 (2009).
  • Kudlow BA, Kennedy BK, Monnat RJ Jr. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat. Rev. Mol. Cell Biol. 8, 394–404 (2007).
  • Rossi DJ, Bryder D, Seita J et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).
  • Sedivy JM, Banumathy G, Adams PD. Aging by epigenetics – a consequence of chromatin damage? Exp. Cell Res. 314, 1909–1917 (2008).
  • Rajawat YS, Hilioti Z, Bossis I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res. Rev. 8, 199–213 (2009).
  • Carlson ME, Conboy MJ, Hsu M et al. Relative roles of TGF-beta 1 and Wnt in the systemic regulation and aging of satellite cell response. Aging Cell 8, 676–689 (2009).
  • Conboy IM, Conboy MJ, Wagers AJ et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).
  • Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).
  • Digirolamo CM, Stokes D, Colter D et al. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol. 107, 275–281 (1999).
  • Dimri GP, Lee X, Basile G et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).
  • Bonab MM, Alimoghaddam K, Talebian F et al. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 7, 14–20 (2006).
  • Shibata KR, Aoyama T, Shima Y et al. Expression of p16INK4a gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25, 2371–2382 (2007).
  • Baxter MA, Wynn RF, Jowitt SN et al. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22, 675–682 (2004).
  • Rubin H. Promise and problems in relating cellular senescence in vitro to aging in vivo. Arch. Gerontol. Geniatr. 34, 275–286 (2002).
  • Ross SE, Hemati N, Longo KA et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).
  • Cheleuitte D, Mizuno S, Glowachi J. In vitro secretion of cytokines by human bone marrow: effects of age and estrogen status. J. Clin. Endocrinol. Metab. 83, 2043–2051 (1998).
  • Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3, 379–389 (2004).
  • Wagner W, Horn P, Castoldi M et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3, e2213 (2008).
  • Noh HB, Ahn H-J, Lee W-J, Kwack K, Kwon YD. The molecular signature of in vitro senescence in human mesenchymal stem cells. Genes. Genomics. 32, 87–93 (2010).
  • Clevers HH. Wnt/beta-catenin signaling in development and disease. Cell 127(3), 469–480 (2006).
  • Zhang D-Y, Wang H-J, Tan T-Z. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS ONE 6, e21397 (2011).
  • Zhang D-A, Pan Y, Zhang C et al. Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol. Cell Biochem. 374, 13–20 (2013).
  • Lee J-S, Lee M-O, Moon B-H et al. Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells 27, 1963–1975 (2009).
  • Yuan H-F, Zhai C, Tan X-L et al. SIRT1 is required for long-term growth of human mesenchymal stem cells. J. Mol. Med. 90, 389–400 (2012).
  • Alessio N, Bohn W, Rauchberger V et al. Silencing of RB1 but not RB2/P130 induces cellular senescence and impairs the differentiation potential of human mesenchymal stem cells. Cell Mol. Life Sci. 70(9), 1637–1651 (2013).
  • Tsai C-C, Chen Y-J, Yew T-L et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117(2), 459–469 (2011).
  • Giorgio M, Trinei M, Migliaccio E et al. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8, 722–728 (2007).
  • Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P. Oxidative stress induces senescence in human mesenchymal stem cells. Exp. Cell Res. 317, 1541–1547 (2012).
  • Heo J-Y, Jing K, Song K-S et al. Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells. Stem Cells 27, 1455–1462 (2009).
  • Choi JW, Herr DR, Noguchi K et al. LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol. 50, 157–186 (2010).
  • Kanehira M, Kikuchi T, Ohkouchi S et al. Targeting lysophosphatidic acid signaling retards culture-associated senescence of human marrow stromal cells. PLoS ONE 7, e32185 (2012).
  • Wagner W, Bork S, Horn P et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4, e5846 (2009).
  • Geißler S, Textor M, Kühnisch J et al. Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS ONE 7, e52700 (2012).
  • Rubio D, Garcia-Castro J, Martin MC et al. Spontaneous human adult stem cell transformation. Cancer Res. 65, 3035–3039 (2005).
  • Li N, Yang R, Zhang W et al. Genetically transforming human mesenchymal stem cells to sarcomas: changes in cellular phenotype and multilineage differentiation potential. Cancer 115, 4795–4806 (2009).
  • Mohseny AB, Szuhai K, Romeo S et al. Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J. Pathol. 219, 294–305 (2009).
  • Wang Y, Huso DL, Harrington J et al. Outgrowth of a transformed cell population derived from normal human BM mesenchymal stem cell culture. Cytotherapy 7, 509–519 (2005).
  • Li H, Fan X, Kovi RC et al. Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res. 67, 10889–10898 (2007).
  • Danielson LS, Menendez S, Attolini CS et al. A differentiation-based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy. Am. J. Pathol. 177, 908–917 (2010).
  • Shimizu T, Ishikawa T, Sugihara E et al. c-MYC overexpression with loss of INK4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 29, 5687–5699 (2010).
  • Lin PP, Pandey MK, Jin F et al. Targeted mutation of p53 and Rb in mesenchymal cells of the limb bud produces sarcomas in mice. Carcinogenesis 30, 1789–1795 (2009).
  • Casillero-Trejo Y, Eliazer S, Xiang L, Richradson JA, Ilaria RL Jr. Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI-1-dependent Ewing sarcoma-like tumors. Cancer Res. 65, 8698–8705 (2005).
  • Riggi N, Suvà ML, Suvà D et al. EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68, 2176–2185 (2008).
  • Rodriguez R, Rubio R, Guitierrez-Aranda I et al. Fus-Chop fusion protein expression coupled to p53 deficiency induces liposarcoma in mouse but not human adipose-derived mesenchymal stem/stromal cells. Stem Cells 29, 179–192 (2011).
  • Riggi N, Cironi L, Provero P et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 66, 7016–7023 (2006).
  • Ren YX, Finckenstein FG, Abdueva DA et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res. 68, 6587–6597 (2008).
  • Hernando E, Charytonowicz E, Dudas ME et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat. Med. 13, 748–753 (2007).
  • Cleton-Jansen AM, Anninga JK, Briaire-de Bruijn IH et al. Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumorigenic pathways. Br. J. Cancer 101, 1909–1918 (2009).
  • Matushansky I, Hernando E, Socci ND et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J. Clin. Invest. 117, 3248–3257 (2007).
  • Honoki K, Fujii H, Tohma Y et al. Comparison of gene expression profiling in sarcomas and mesenchymal stem cells identifies tumorigenic pathways in chemically induced rat sarcoma model. ISRN Oncol. 2012, 909453 (2012).
  • Noer A, Lindeman LC, Collas P. Histone h3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cell Dev. 18(5), 725–736 (2009).
  • Carnero A, Hudson JD, Hannon GJ, Beach DH. Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res. 28(11), 2234–2241 (2000).
  • Vassilev LT, Vu BT, Graves B et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).
  • Wang B, Fang L, Zhao H, Xiang T, Wang D. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta. Biochem. Biophys. Sin. 44(8), 685–691 (2012).
  • Bykov VJ, Issaeva N, Shilov A et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288 (2002).
  • Bykov VJ, Zache N, Stridh H et al. PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24(21), 3484–3491 (2005).
  • Johnsson P, Ackley A, Vidarsdottir L et al. A pseudogene long-encoding-RNA network regulates PTEN transcription and translation in human cells. Nat. Struct. Mol. Biol. 20(4), 440–446 (2013).
  • Carnero A. Targeting the cell cycle for cancer therapy. Br. J. Cancer 87(2), 129–133 (2002).
  • Lin H, Chen Z, Wang G et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374–379 (2010).
  • Chan CH, Gao Y, Moten A, Lin HK. Novel ARF/p53-independent senescence pathways in cancer repression. J. Mol. Med. (Berl.) 89(9), 857–867 (2011).
  • Mackintosh C, Garcia-Dominguex DJ, Ordóňez JL et al. WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cell. Oncogene 32(11), 1441–1451 (2013).
  • Honoki K, Yoshitani K, Tsujiuchi T et al. Growth inhibition and induction of apoptosis by flavopiridol in rat lung adenocarcinoma, osteosarcoma and malignant fibrous histiocytoma cell lines. Oncol. Rep. 11(5), 1025–1030 (2004).
  • Morris DG, Bramwell VH, Turcotte R et al. A Phase II study of flavopiridol in patients with previously untreated advanced soft tissue sarcoma. Sarcoma 2006, 64374 (2006).
  • Luke JJ, D’Adamo DR, Dickson MA et al. The cyclin-dependent kinase inhibitor flavopiridol potentiates doxorubicin efficacy in advanced sarcomas: preclinical investigations and results of a Phase I dose-escalation clinical trial. Clin. Cancer Res. 18(9), 2638–2647 (2012).
  • Iurisci I, Filipski E, Reinhardt J et al. Improved tumor control through circadian clock induction by Seliciclib, a cyclin-dependent kinase inhibitor. Cancer Res. 66(22), 10720–10728 (2006).
  • Fu W, Ma L, Chu B et al. The cyclin-dependent kinase inhibitor SCH 727965 (dinacliclib) induces the apoptosis of osteosarcoma cells. Mol. Cancer Ther. 10(6), 1018–1027 (2011).
  • Cai Y, Mohseny AB, Karperien M et al. Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J. Pathol. 220(1), 24–33 (2010).
  • McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X, Hoang BH. The Wnt signaling pathway: implications for therapy in osteosarcoma. Expert Rev. Anticancer Ther. 11(8), 1223–1232 (2011).
  • Vijayakumar S, Liu G, Rus IA et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A. Cancer Cell 19, 601–612 (2011).
  • Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).
  • Nie Z, Hu G, Wei G et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).
  • Lovén J, Orlando DA, Sigova AA et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).
  • Wang H, Hammoudeh DI, Follis AV et al. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther. 6(9), 2399–2408 (2007).
  • Schwarze SR, Fu VX, Desotelle JA, Kenowski ML, Jarrard DF. The identification of senescence-specific genes during the induction of senescence in prostate cancer cells. Neoplasia 7(9), 816–823 (2005).
  • Ota H, Tokunaga E, Chang K et al. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25(2), 176–185 (2006).
  • Filippakopoulos P, Qi J, Picaud S et al. Selective inhibition of BET bromodomains. Nature 468(7327), 1067–1073 (2010).
  • Delmore JE, Issa GC, Lemieux ME et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6), 904–917 (2011).
  • Harley CB. Telomerase and cancer therapeutics. Nat. Rev. Cancer 8, 167–179 (2008).
  • Fujimori J, Matsuo T, Shimose S et al. Antitumor effects of telomerase inhibitor TMPyP4 in osteosarcoma cell lines. J. Orthop. Res. 29(11), 1707–1711 (2011).
  • Parsch D, Brassat U, Brümmendorf TH, Fellenberg J. Consequences of telomerase inhibition by BIBR1532 on proliferation and chemosensitivity of chondrosarcoma cell lines. Cancer Invest. 26(6), 590–596 (2008).
  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009).
  • Collado M, Gil J, Efeyan C et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).
  • Tung CH, Zeng Q, Shah Q et al. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res. 64, 1579–1583 (2004).
  • Chang BD, Xuan Y, Broude EV et al. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18(34), 4808–4818 (1999).
  • Schmitt CA, Friedman JS, Yang M et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3), 335–346 (2002).
  • Beausejour CM, Krtolica A, Gamili F et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22(16), 4212–4222 (2003).
  • Trucco M, Loeb D. Sarcoma stem cells: do we know what we are looking for? Sarcoma 2012, e291705 (2012).
  • Melo S, Villanueva A, Moutinho C et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. PNAS 108(11), 4394–4399 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.