202
Views
5
CrossRef citations to date
0
Altmetric
Theme: Gastrointestinal & Hepatopancreatobiliary Cancer - Reviews

Advances in biomarkers for esophageal cancer

&
Pages 1169-1180 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J. Clin. 60(5), 277–300 (2010).
  • Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92(3), 549–555 (2001).
  • Ries LAG, Melbert D, Krapcho M et al. SEER Cancer Statistics Review1975–2004. SEER Cancer Statistics Review 1975–2004 (2007).
  • Thompson SK, Ruszkiewicz AR, Jamieson GG et al. Improving the accuracy of TNM staging in esophageal cancer: a pathological review of resected specimens. Ann. Surg. Oncol. 15(12), 3447–3458 (2008).
  • Walker RA, Bartlett JM, Dowsett M et al. HER2 testing in the UK: further update to recommendations. J. Clin. Pathol. 61(7), 818–824 (2008).
  • Penault-Llorca F, Bilous M, Dowsett M et al. Emerging technologies for assessing HER2 amplification. Am. J. Clin. Pathol. 132(4), 539–548 (2009).
  • Bekaii-Saab TS, Roda JM, Guenterberg KD et al. A phase I trial of paclitaxel and trastuzumab in combination with interleukin-12 in patients with HER2/neu-expressing malignancies. Mol. Cancer. Ther. 8(11), 2983–2991 (2009).
  • Lesnikova I, Lidang M, Hamilton-Dutoit S, Koch J. HER2/neu (c-erbB-2) gene amplification and protein expression are rare in uterine cervical neoplasia: a tissue microarray study of 814 archival specimens. APMIS 117(10), 737–745 (2009).
  • Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 27(34), 5838–5847 (2009).
  • Brien TP, Odze RD, Sheehan CE, Mckenna BJ, Ross JS. HER-2/neu gene amplification by FISH predicts poor survival in Barrett's esophagus-associated adenocarcinoma. Hum. Pathol. 31(1), 35–39 (2000).
  • Reichelt U, Duesedau P, Tsourlakis M et al. Frequent homogeneous HER-2 amplification in primary and metastatic adenocarcinoma of the esophagus. Mod. Pathol. 20(1), 120–129 (2007).
  • Langer R, Rauser S, Feith M et al. Assessment of ErbB2 (Her2) in oesophageal adenocarcinomas: summary of a revised immunohistochemical evaluation system, bright field double in situ hybridisation and fluorescence in situ hybridisation. Mod. Pathol. 24(7), 908–916 (2011).
  • Flejou JF, Paraf F, Muzeau F et al. Expression of c-erbB-2 oncogene product in Barrett's adenocarcinoma: pathological and prognostic correlations. J. Clin. Pathol. 47(1), 23–26 (1994).
  • Hardwick RH, Barham CP, Ozua P et al. Immunohistochemical detection of p53 and c-erbB-2 in oesophageal carcinoma; no correlation with prognosis. Eur. J. Surg. Oncol. 23(1), 30–35 (1997).
  • Hu Y, Bandla S, Godfrey TE et al. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma. Mod. Pathol. 24(7), 899–907 (2011).
  • Thompson SK, Sullivan TR, Davies R, Ruszkiewicz AR. Her-2/neu gene amplification in esophageal adenocarcinoma and its influence on survival. Ann. Surg. Oncol. 18(7), 2010–2017 (2011).
  • Duhaylongsod FG, Gottfried MR, Iglehart JD, Vaughn AL, Wolfe WG. The significance of c-erb B-2 and p53 immunoreactivity in patients with adenocarcinoma of the esophagus. Ann. Surg. 221(6), 677–683 (1995).
  • Yoon HH, Shi Q, Sukov WR et al. Association of HER2/ErbB2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Clin. Cancer Res. 18(2), 546–554 (2012).
  • Birner P, Jesch B, Friedrich J et al. Carbonic anhydrase IX overexpression is associated with diminished prognosis in esophageal cancer and correlates with Her-2 expression. Ann. Surg. Oncol. 18(12), 3330–3337 (2011).
  • Stoecklein NH, Hosch SB, Bezler M et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13(5), 441–453 (2008).
  • Friess H, Fukuda A, Tang WH et al. Concomitant analysis of the epidermal growth factor receptor family in esophageal cancer: overexpression of epidermal growth factor receptor mRNA but not of c-erbB-2 and c-erbB-3. World J. Surg. 23(10), 1010–1018 (1999).
  • Chan DS, Twine CP, Lewis WG. Systematic review and meta-analysis of the influence of HER2 expression and amplification in operable oesophageal cancer. J. Gastrointest. Surg. 16(10), 1821–1829 (2012).
  • Bang YJ, Van Cutsem E, Feyereislova A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742), 687–697 (2010).
  • Dreilich M, Wanders A, Brattstrom D et al. HER-2 overexpression (3+) in patients with squamous cell esophageal carcinoma correlates with poorer survival. Dis. Esophagus 19(4), 224–231 (2006).
  • Akamatsu M, Matsumoto T, Oka K et al. c-erbB-2 oncoprotein expression related to chemoradioresistance in esophageal squamous cell carcinoma. Int. J. Radiat Oncol. Biol. Phys. 57(5), 1323–1327 (2003).
  • Uno M, Otsuki T, Kurebayashi J et al. Anti-HER2-antibody enhances irradiation-induced growth inhibition in head and neck carcinoma. Int. J. Cancer 94(4), 474–479 (2001).
  • Safran H, Dipetrillo T, Akerman P et al. Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 67(2), 405–409 (2007).
  • Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 58(4), 343–351 (2005).
  • Kyrgidis A, Kountouras J, Zavos C, Chatzopoulos D. New molecular concepts of Barrett's esophagus: clinical implications and biomarkers. J. Surg. Res. 125(2), 189–212 (2005).
  • Chung Y, Law S, Kwong DL, Luk JM. Serum soluble E-cadherin is a potential prognostic marker in esophageal squamous cell carcinoma. Dis. Esophagus 24(1), 49–55 (2011).
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23(5), 1011–1027 (2005).
  • Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 3, 4–10 (2005).
  • Kyzas PA, Cunha IW, Ioannidis JPA. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin. Cancer Res. 11(4), 1434–1440 (2005).
  • Schoenleber SJ, Kurtz DM, Talwalkar JA, Roberts LR, Gores GJ. Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br. J. Cancer 100(9), 1385–1392 (2009).
  • Zhan P, Wang J, Lv XJ et al. Prognostic value of vascular endothelial growth factor expression in patients with lung cancer: a systematic review with meta-analysis. J. Thorac. Oncol. 4(9), 1094–1103 (2009).
  • Liu P, Chen W, Zhu H et al. Expression of VEGF-C correlates with a poor prognosis based on analysis of prognostic factors in 73 patients with esophageal squamous cell carcinomas. Jpn. J. Clin. Oncol. 39(10), 644–650 (2009).
  • Tanaka T, Ishiguro H, Kuwabara Y et al. Vascular endothelial growth factor C (VEGF-C) in esophageal cancer correlates with lymph node metastasis and poor patient prognosis. J. Exp. Clin. Cancer Res. 29(83), 1756–9966 (2010).
  • Duhaylongsod FG, Wolfe WG. Barrett's esophagus and adenocarcinoma of the esophagus and gastroesophageal junction. J. Thorac. Cardiovasc. Surg. 102(1), 36–41; discussion 41–32 (1991).
  • Menke-Pluymers MB, Schoute NW, Mulder AH, Hop WC, Van Blankenstein M, Tilanus HW. Outcome of surgical treatment of adenocarcinoma in Barrett's oesophagus. Gut 33(11), 1454–1458 (1992).
  • Sabel MS, Pastore K, Toon H, Smith JL. Adenocarcinoma of the esophagus with and without Barrett mucosa. Arch. Surg. 135(7), 831–835; discussion 836 (2000).
  • Portale G, Peters JH, Hagen JA et al. Comparison of the clinical and histological characteristics and survival of distal esophageal-gastroesophageal junction adenocarcinoma in patients with and without barrett mucosa. Arch. Surg. 140(6), 570–574; discussion 574–575 (2005).
  • Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann. Oncol. 19(9), 1523–1529 (2008).
  • Tanner M, Hollmen M, Junttila TT et al. Amplification of HER-2 in gastric carcinoma: association with Topoisomerase II alpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann. Oncol. 16(2), 273–278 (2005).
  • Hede K. Gastric cancer: trastuzumab trial results spur search for other targets. J. Natl Cancer Inst. 101(19), 1306–1307 (2009).
  • Wu CW, Chen GD, Fann CS et al. Clinical implications of chromosomal abnormalities in gastric adenocarcinomas. Genes Chromosomes Cancer 35(3), 219–231 (2002).
  • Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin. Cancer Res. 7(10), 2958–2970 (2001).
  • Jankowski J, Mcmenemin R, Hopwood D, Penston J, Wormsley KG. Abnormal expression of growth regulatory factors in Barrett's oesophagus. Clin. Sci. (Lond.) 81(5), 663–668 (1991).
  • Jankowski J, Hopwood D, Wormsley KG. Flow-cytometric analysis of growth-regulatory peptides and their receptors in Barrett's oesophagus and oesophageal adenocarcinoma. Scand. J. Gastroenterol. 27(2), 147–154 (1992).
  • Brito MJ, Filipe MI, Linehan J, Jankowski J. Association of transforming growth factor alpha (TGFA) and its precursors with malignant change in Barrett's epithelium: biological and clinical variables. Int. J. Cancer 60(1), 27–32 (1995).
  • Wilkinson NW, Black JD, Roukhadze E et al. Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. J. Gastrointest. Surg. 8(4), 448–453 (2004).
  • Yacoub L, Goldman H, Odze RD. Transforming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett's-associated neoplasia: correlation with prognosis. Mod. Pathol. 10(2), 105–112 (1997).
  • Al-Kasspooles M, Moore JH, Orringer MB, Beer DG. Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. Int. J. Cancer 54(2), 213–219 (1993).
  • Demicco EG, Farris AB 3rd, Baba Y et al. The dichotomy in carcinogenesis of the distal esophagus and esophagogastric junction: intestinal-type vs cardiac-type mucosa-associated adenocarcinoma. Mod. Pathol. 24(9), 1177–1190 (2011).
  • Wang KL, Wu T-T, Choi IS et al. Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas. Cancer 109(4), 658–667 (2007).
  • Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1(11), 1311–1318 (1995).
  • Kawaguchi Y, Kono K, Mimura K, Sugai H, Akaike H, Fujii H. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. Int. J. Cancer 120(4), 781–787 (2007).
  • Rodriguez CP, Adelstein DJ, Rice TW et al. A phase II study of perioperative concurrent chemotherapy, gefitinib, and hyperfractionated radiation followed by maintenance gefitinib in locoregionally advanced esophagus and gastroesophageal junction cancer. J. Thorac. Oncol. 5(2), 229–235 (2010).
  • Janmaat ML, Gallegos-Ruiz MI, Rodriguez JA et al. Predictive factors for outcome in a phase II study of gefitinib in second-line treatment of advanced esophageal cancer patients. J. Clin. Oncol. 24(10), 1612–1619 (2006).
  • Ferry DR, Anderson M, Beddard K et al. A phase II study of gefitinib monotherapy in advanced esophageal adenocarcinoma: evidence of gene expression, cellular, and clinical response. Clin. Cancer Res. 13(19), 5869–5875 (2007).
  • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89(6), 2548–2556 (2004).
  • Donohoe CL, Pidgeon GP, Lysaght J, Reynolds JV. Obesity and gastrointestinal cancer. Br. J. Surg. 97(5), 628–642 (2010).
  • Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 4(7), 505–518 (2004).
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8(12), 915–928 (2008).
  • Lukanova A, Soderberg S, Stattin P et al. Nonlinear relationship of insulin-like growth factor (IGF)-I and IGF-I/IGF-binding protein-3 ratio with indices of adiposity and plasma insulin concentrations (Sweden). Cancer Causes Control 13(6), 509–516 (2002).
  • Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R. Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc. Natl Acad. Sci. USA 90(23), 11217–11221 (1993).
  • Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 62(10), 2942–2950 (2002).
  • Law JH, Habibi G, Hu K et al. Phosphorylated insulin-like growth factor-i/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 68(24), 10238–10246 (2008).
  • Frasca F, Pandini G, Sciacca L et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem. 114(1), 23–37 (2008).
  • Samani AA, Yakar S, Leroith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev. 28(1), 20–47 (2007).
  • Howard JM, Beddy P, Ennis D, Keogan M, Pidgeon GP, Reynolds JV. Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br. J. Surg. 97(7), 1020–1027 (2010).
  • Piao W, Wang Y, Adachi Y et al. Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas. Mol. Cancer Ther. 7(6), 1483–1493 (2008).
  • Iravani S, Zhang HQ, Yuan ZQ et al. Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of barrett’s neoplasia. Hum. Pathol. 34(10), 975–982 (2003).
  • Liu Y-C, Leu CM, Wong FH et al. Autocrine stimulation by insulin-like growth factor I is involved in the growth, tumorigenicity and chemoresistance of human esophageal carcinoma cells. J. Biomed. Sci. 9(6), 665–674 (2002).
  • Doyle SL, Donohoe CL, Finn SP et al. IGF-1 and its receptor in esophageal cancer: association with adenocarcinoma and visceral obesity. Am. J. Gastroenterol. 107(2), 196–204 (2012).
  • Donohoe CL, Doyle SL, Mcgarrigle S et al. Role of the insulin-like growth factor 1 axis and visceral adiposity in oesophageal adenocarcinoma. Br. J. Surg. 99(3), 387–396 (2012).
  • Turner NC, Reis-Filho JS, Russell AM et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26(14), 2126–2132 (2007).
  • Russo J, Russo IH. Breast development, hormones and cancer. Adv. Exp. Med. Biol. 630, 52–56 (2008).
  • Chen JQ, Brown TR, Yager JD. Mechanisms of hormone carcinogenesis: evolution of views, role of mitochondria. Adv. Exp. Med. Biol. 630, 1–18 (2008).
  • Rose DP, Vona-Davis L. Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 66(1), 33–38 (2010).
  • Sharpe RM. The roles of oestrogen in the male. Trends Endocrinol. Metab. 9(9), 371–377 (1998).
  • Zuguchi M, Miki Y, Onodera Y et al. Estrogen receptor α and β in esophageal squamous cell carcinoma. Cancer Sci. 103(7), 1348–1355 (2012).
  • Li F, Ambrosini G, Chu EY et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396(6711), 580–584 (1998).
  • Hsu KF, Lin CK, Yu CP et al. Cortactin, fascin, and survivin expression associated with clinicopathological parameters in esophageal squamous cell carcinoma. Dis. Esophagus 22(5), 402–408 (2009).
  • Dannenberg AJ, Altorki NK, Boyle JO et al. Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol. 2(9), 544–551 (2001).
  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, Dubois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5), 705–716 (1998).
  • Tsujii M, Kawano S, Dubois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl Acad. Sci. USA 94(7), 3336–3340 (1997).
  • Gallo O, Masini E, Bianchi B, Bruschini L, Paglierani M, Franchi A. Prognostic significance of cyclooxygenase-2 pathway and angiogenesis in head and neck squamous cell carcinoma. Hum. Pathol. 33(7), 708–714 (2002).
  • Ranger GS, Thomas V, Jewell A, Mokbel K. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res. 24(4), 2349–2351 (2004).
  • Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res. 57(7), 1276–1280 (1997).
  • Sheehan KM Sheahan K, O'Donoghue DP et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 282(13), 1254–1257 (1999).
  • Yip-Schneider MT, Barnard DS, Billings SD et al. Cyclooxygenase-2expression in human pancreatic adenocarcinomas. Carcinogenesis 21(2), 139–146 (2000).
  • Shirahama T, Arima J-I, Akiba S, Sakakura C. Relation between cyclooxygenase-2 expression and tumor invasiveness and patient survival in transitional cell carcinoma of the urinary bladder. Cancer 92(1), 188–193 (2001).
  • Hida T, Yatabe Y, Achiwa H et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 58(17), 3761–3764 (1998).
  • Wang D, Dubois RN. Prostaglandins and cancer. Gut 55(1), 115–122 (2006).
  • Prins MJ, Verhage RJ, Ten Kate FJ, Van Hillegersberg R. Cyclooxygenase isoenzyme-2 and vascular endothelial growth factor are associated with poor prognosis in esophageal adenocarcinoma. J. Gastrointest. Surg. 16(5), 956–966 (2012).
  • Takatori H, Natsugoe S, Okumura H et al. Cyclooxygenase-2 expression is related to prognosis in patients with esophageal squamous cell carcinoma. Eur. J. Surg. Oncol. 34(4), 397–402 (2008).
  • Corley DA, Kerlikowske K, Verma R, Buffler P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. Gastroenterology 124(1), 47–56 (2003).
  • Heath EI, Canto MI, Piantadosi S et al. Secondary chemoprevention of Barrett's esophagus with celecoxib: results of a randomized trial. J. Natl Cancer Inst. 99(7), 545–557 (2007).
  • Guillem P, Triboulet JP. Elevated serum levels of C-reactive protein are indicative of a poor prognosis in patients with esophageal cancer. Dis. Esophagus 18(3), 146–150 (2005).
  • Nakatsu T, Motoyama S, Maruyama K et al. Tumoral CRP expression in thoracic esophageal squamous cell cancers is associated with poor outcomes. Surg. Today 42(7), 652–658 (2012).
  • Shimada H, Nabeya Y, Okazumi S et al. Elevation of preoperative serum C-reactive protein level is related to poor prognosis in esophageal squamous cell carcinoma. J. Surg. Oncol. 83(4), 248–252 (2003).
  • Gockel I, Dirksen K, Messow CM, Junginger T. Significance of preoperative C-reactive protein as a parameter of the perioperative course and long-term prognosis in squamous cell carcinoma and adenocarcinoma of the oesophagus. World J. Gastroenterol. 12(23), 3746–3750 (2006).
  • Gubbay J, Collignon J, Koopman P et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346(6281), 245–250 (1990).
  • Pevny LH, Lovell-Badge R. Sox genes find their feet. Curr. Opin. Genet. Dev. 7(3), 338–344 (1997).
  • Sinclair AH, Berta P, Palmer MS et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281), 240–244 (1990).
  • Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27(6), 1409–1420 (1999).
  • Ferrari S, Harley VR, Pontiggia A, Goodfellow PN, Lovell-Badge R, Bianchi ME. SRY, like HMG1, recognizes sharp angles in DNA. Embo J. 11(12), 4497–4506 (1992).
  • Weiss MA. Floppy SOX: mutual induced fit in hmg (high-mobility group) box-DNA recognition. Mol. Endocrinol. 15(3), 353–362 (2001).
  • Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat. Rev. Mol. Cell. Biol. 6(11), 872–884 (2005).
  • Wang Q, He W, Lu C et al. Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res. 29(4), 1233–1241 (2009).
  • Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P. New type of POU domain in germ line-specific protein Oct-4. Nature 344(6265), 435–439 (1990).
  • Scholer HR. Octamania: the POU factors in murine development. Trends Genet. 7(10), 323–329 (1991).
  • Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19(4), 271–278 (2001).
  • Zhou X, Huang GR, Hu P. Over-expression of Oct4 in human esophageal squamous cell carcinoma. Mol. Cells 32(1), 39–45 (2011).
  • He W, Li K, Wang F, Qin YR, Fan QX. Expression of OCT4 in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. World J. Gastroenterol. 18(7), 712–719 (2012).
  • Tew WP, Kelsen DP, Ilson DH. Targeted therapies for esophageal cancer. Oncologist 10(8), 590–601 (2005).
  • Sauter ER, Keller SM, Erner S, Goldberg M. HER-2/neu: a differentiation marker in adenocarcinoma of the esophagus. Cancer Lett. 75(1), 41–44 (1993).
  • Mimura K, Kono K, Hanawa M et al. Frequencies of HER-2/neu expression and gene amplification in patients with oesophageal squamous cell carcinoma. Br. J. Cancer 92(7), 1253–1260 (2005).
  • Polkowski W, Van Sandick JW, Offerhaus GJ et al. Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann. Surg. Oncol. 6(3), 290–297 (1999).
  • Sato-Kuwabara Y, Neves JI, Fregnani JH, Sallum RA, Soares FA. Evaluation of gene amplification and protein expression of HER-2/neu in esophageal squamous cell carcinoma using Fluorescence in situ Hybridization (FISH) and immunohistochemistry. BMC Cancer 9(6), 1471–2407 (2009).
  • Yamamoto Y, Yamai H, Seike J et al. Prognosis of esophageal squamous cell carcinoma in patients positive for human epidermal growth factor receptor family can be improved by initial chemotherapy with docetaxel, fluorouracil, and cisplatin. Ann. Surg. Oncol. 19(3), 757–765 (2012).
  • Wei Q, Chen L, Sheng L, Nordgren H, Wester K, Carlsson J. EGFR, HER2 and HER3 expression in esophageal primary tumours and corresponding metastases. Int. J. Oncol. 31(3), 493–499 (2007).
  • Sano A, Kato H, Sakurai S et al. CD24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 16(2), 506–514 (2009).
  • Nakamura H, Saji H, Ogata A et al. Correlation between encoded protein overexpression and copy number of the HER2 gene with survival in non-small cell lung cancer. Int. J. Cancer 103(1), 61–66 (2003).
  • Zhan N, Dong WG, Tang YF, Wang ZS, Xiong CL. Analysis of HER2 gene amplification and protein expression in esophageal squamous cell carcinoma. Med. Oncol. 29(2), 933–940 (2012).
  • Bizari L, Borim AA, Leite KR et al. Alterations of the CCND1 and HER-2/neu (ERBB2) proteins in esophageal and gastric cancers. Cancer Genet. Cytogenet. 165(1), 41–50 (2006).
  • Schoppmann SF, Jesch B, Zacherl J et al. HER-2 status in primary oesophageal cancer, lymph nodes and distant metastases. Br. J. Surg. 98(10), 1408–1413 (2011).
  • Lagarde SM, Ten Kate FJW, Richel DJ, Offerhaus GJA, Van Lanschot JJB. Molecular prognostic factors in adenocarcinoma of the esophagus and gastroesophageal junction. Ann. Surg. Oncol. 14(2), 977–991 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.