829
Views
51
CrossRef citations to date
0
Altmetric
Theme: Lung Cancer - Reviews

HER2 and lung cancer

&
Pages 1219-1228 | Published online: 10 Jan 2014

References

  • DeSantis C, Naishadham D, Jemal A. Cancer statistics for African Americans, 2013. CA Cancer J. Clin. 63(3), 151–166 (2013).
  • Schiller JH, Harrington D, Belani CP et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346(2), 92–98 (2002).
  • Kris MG, Johnson BE, Kwiatkowski DJ et al. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI ’s Lung Cancer Mutation Consortium (LCMC). J. Clin. Oncol. 29(Suppl.), Abstract CRA 7506 (2011).
  • Barlesi F, Blons H, Beau-Faller M et al. Biomarkers (BM) France: results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J. Clin. Oncol. 31(Suppl.), Abstract 8000 (2013).
  • Weiss J, Sos ML, Seidel D et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).
  • Dutt A, Ramos AH, Hammerman PS et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS ONE 6, e20351 (2011).
  • Hammerman PS, Sos ML, Ramos AH et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 1, 78–89 (2011).
  • Yamamoto H, Shigematsu H, Nomura M et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 68, 6913–6921 (2008).
  • Rekhtman N, Paik PK, Arcila ME et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin. Cancer Res. 18, 1167–1176 (2012).
  • Paez JG, Jänne PA, Lee JC et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676), 1497–1500 (2004).
  • Pao W, Miller V, Zakowski M et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101(36), 13306–13311 (2004).
  • Soda M, Takada S, Takeuchi K et al. Identification of the transforming EML4-ALK fusion gene in non-small cell lung cancer. Nature 448(7153), 561–566 (2007).
  • Mok TS, Wu YL, Thongprasert S et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361(10), 947–957 (2009).
  • Rosell R, Carcereny E, Gervais R et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13(3), 239–246 (2012).
  • Han JY, Park K, Kim SW et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J. Clin. Oncol. 30(10), 1122–1128 (2012).
  • Mitsudomi T, Morita S, Yatabe Y et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11(2), 121–128 (2010).
  • Maemondo M, Inoue A, Kobayashi K et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362(25), 2380–2388 (2010).
  • Zhou C, Wu YL, Chen G et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12(8), 735–742 (2011).
  • Sequist L, Yang JC, Yamamoto N et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31(27), 3327–3334 (2013).
  • Wu Y-L, Zhou C, Hu C-P et al. LUX-Lung 6: a randomized, open-label, phase III study of afatinib (A) versus gemcitabine/cisplatin (GC) as first-line treatment for Asian patients (pts) with EGFR mutation-positive (EGFR M+) advanced adenocarcinoma of the lung. J. Clin. Oncol. 31(Suppl.), Abstract 8016 (2013).
  • Shaw AT, Kim DW, Nakagawa K et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368(25), 2385–2394 (2013).
  • Capelletti M, Lipson D, Otto G et al. Discovery of recurrent KIF5B-RET fusions and other targetable alterations from clinical NSCLC specimens. J. Clin. Oncol. 30(Suppl.), Abstract 75109 (2012).
  • Shaw AT, Camidge RD, Engelman JA et al. Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J. Clin. Oncol. 30(Suppl.), Abstract 7508 (2012).
  • Slamon DJ, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).
  • Slamon DJ, Godolphin W, Jones LA et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712 (1989).
  • Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann. Oncol. 19, 1523–1529 (2008).
  • Brabender J, Danenberg KD, Metzger R et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin. Cancer Res. 7, 1850–1855 (2001).
  • Cappuzzo F, Varella-Garcia M, Shigematsu H et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J. Clin. Oncol. 23(22), 5007–5018 (2005).
  • Shigematsu H, Lin L, Takahashi T et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl Cancer Inst. 97, 339–346 (2005).
  • Stephens P, Hunter C, Bignell G et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).
  • Sasaki H, Shimizu S, Endo K et al. EGFR and erbB2 mutation status in Japanese lung cancer patients. Int. J. Cancer 118(1), 180–184 (2006).
  • Buttitta F, Barassi F, Fresu G et al. Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int. J. Cancer 119(11), 2586–2591 (2006).
  • Arcila ME, Chaft JE, Nafa K et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin. Cancer Res. 18(18), 4910–4918 (2012).
  • Mazières J, Peters S, Lepage B et al. Lung cancer that harbors a HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31(16), 1997–2003 (2013).
  • Tomizawa K, Suda K, Onozato R et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer 7, 139–144 (2011).
  • MacKinnon M, Kerr KM, King G et al. p53, c-erbB-2 and nm23 expression have no prognostic significance in primary pulmonary adenocarcinoma. Eur. J. Cardiothorac. Surg. 11, 838–842 (1997).
  • Visscher DW, Yadrandji S, Tabaczka P et al. Clinicopathologic analysis of k-ras, p53, and ERBB-2 gene alterations in pulmonary adenocarcinoma. Diagn. Mol. Pathol. 6, 64–69 (1997).
  • Fontanini G, De Laurentiis M, Vignati S et al. Evaluation of epidermal growth factor-related growth factors and receptors and of neoangiogenesis in completely resected stage I-IIIA non-small-cell lung cancer: amphiregulin and microvessel count are independent prognostic indicators of survival. Clin. Cancer Res. 4, 241–249 (1998).
  • Graziano SL, Kern JA, Herndon JE et al. Analysis of neuroendocrine markers, HER2 and CEA before and after chemotherapy in patients with stage IIIA non-small cell lung cancer: a Cancer and Leukemia Group B study. Lung Cancer 21, 203–211 (1998).
  • Greatens TM, Niehans GA, Rubins JB et al. Do molecular markers predict survival in non-small-cell lung cancer? Am. J. Respir. Crit. Care Med. 157, 1093–1097 (1998).
  • Nemunaitis J, Klemow S, Tong A et al. Prognostic value of K-ras mutations, ras oncoprotein, and c-erb B-2 oncoprotein expression in adenocarcinoma of the lung. Am. J. Clin. Oncol. 21, 155–160 (1998).
  • Fu XL, Zhu XZ, Shi DR et al. Study of prognostic predictors for non-small cell lung cancer. Lung Cancer 23, 143–152 (1999).
  • Cantero R, Torres AJ, Maestro M, et al. Prognostic value of the quantified expression of p185 in non-small cell lung cancer. J. Thorac Cardiovasc. Surg. 119, 1119–1125 (2000).
  • Schneider PM, Praeuer HW, Stoeltzing O et al. Multiple molecular marker testing (p53, C-Ki-ras, c-erbB-2) improves estimation of prognosis in potentially curative resected non-small cell lung cancer. Br. J. Cancer 83, 473–479 (2000).
  • Carbognani P, Tincani G, Crafa P et al. Biological markers in non-small cell lung cancer. Retrospective study of 10 year follow-up after surgery. J. Cardiovasc. Surg. 43, 545–548 (2002).
  • Hirsch FR, Varella-Garcia M, Franklin WA et al. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung carcinomas. Br. J. Cancer 86, 1449–1456 (2002).
  • Takenaka M, Hanagiri T, Shinohara S et al. The prognostic significance of HER2 overexpression in non-small cell lung cancer. Anticancer Res. 31(12), 4631–4636 (2011).
  • Liu L, Shao X, Gao W et al. The role of human epidermal growth factor receptor 2 as a prognostic factor in lung cancer: a meta-analysis of published data. J. Thorac Oncol. 5, 1922–1932 (2010).
  • Cappuzzo F Cho YG, Sacconi A et al. p95HER2 truncated form in resected non-small cell lung cancer. J. Thorac Oncol. 7(3), 520–527 (2012).
  • Lenferink AE, Pinkas-Kramarski R, van de Poll ML et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 17, 3385–3397 (1998).
  • Karunagaran D, Tzahar E, Beerli RR et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 15, 254–264 (1996).
  • Moasser MM, Basso A, Averbuch S et al. The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res. 61, 7184–7188 (2001).
  • Moulder SL, Yakes FM, Muthuswamy SK et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61, 8887–8895 (2001).
  • Anido J, Matar P, Albanell J et al. ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin. Cancer Res. 9, 1274–1283 (2003).
  • Cappuzzo F, Gregorc V, Rossi E et al. Gefitinib in pretreated non-small-cell lung cancer (NSCLC): analysis of efficacy and correlation with HER2 and epidermal growth factor receptor expression in locally advanced or metastatic NSCLC. J. Clin. Oncol. 21(14), 2658–2663 (2003).
  • Cappuzzo F, Hirsch FR, Rossi E et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst. 97(9), 643–655 (2005).
  • Takezawa K, Pirazzoli V, Arcila ME et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discovery 2, 922–933 (2012).
  • Yonesaka K, Zejnullahu K, Okamoto I et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 3(99), 99ra86 (2011).
  • Bertotti A, Migliardi G, Galimi F et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).
  • Martin V, Landi L, Molinari F et al. HER2 gene copy number status may influence clinical efficacy to anti-EGFR monoclonal antibodies in metastatic colorectal cancer patients. Br. J. Cancer 108, 668–675 (2013).
  • Agus DB, Akita RW, Fox WD et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137 (2002).
  • Wang SE, Narasanna A, Perez-Torres M et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).
  • Slamon DJ, Leyland-Jones B, Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).
  • Bang YJ, Van Cutsem E, Feyereislova A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376, 687–697 (2010).
  • Gatzemeier U, Groth G, Butts C et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann. Oncol. 15, 19–27 (2004).
  • Langer CJ, Stephenson P, Thor A et al. Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group study 2598. J. Clin. Oncol. 22, 1180–1187 (2004).
  • Krug LM, Miller VA, Patel J et al. Randomized phase II study of weekly docetaxel plus trastuzumab versus weekly paclitaxel plus trastuzumab in patients with previously untreated advanced nonsmall cell lung carcinoma. Cancer 104, 2149–2155 (2005).
  • Lara PN Jr, Laptalo L, Longmate J et al. Trastuzumab plus docetaxel in HER2/neu-positive non-small-cell lung cancer: a California Cancer Consortium screening and phase II trial. Clin. Lung Cancer 5(4), 231–236 (2004).
  • Zinner RG, Glisson BS, Fossella FV et al. Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 44(1), 99–110 (2004).
  • Herbst RS, Davies AM, Natale RB et al. Efficacy and safety of single-agent pertuzumab, a human epidermal receptor dimerization inhibitor, in patients with non small cell lung cancer. Clin. Cancer Res. 13, 6175–6181 (2007).
  • Perera SA, Li D, Shimamura T et al. HER2YVMA drives rapid development of adeno-squamous lung tumors in mice that are sensitive to BIBW2992 and rapamycin combination therapy. Proc. Natl Acad. Sci. USA 106, 474–479 (2009).
  • Cappuzzo F, Bemis L, Varella-Garcia M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N. Engl. J. Med. 354(24), 2619–2621 (2006).
  • Kris MG, Mok T, Ou S-HI et al. First-line dacomitinib (PF-00299804), an irreversible pan-HER tyrosine kinase inhibitor, for patients withEGFR-mutant lung cancers. J. Clin. Oncol. 30(Suppl.), Abstract 7530 (2012).
  • De Grève J, Teugels E, Geers C et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 76(1), 123–127 (2012).
  • Gandhi L, Bahleda R, Cleary JM et al. Two-dimensional phase I study of neratinib (NER) combined with temsirolimus (TEM) in patients (Pts) with solid tumors. J. Clin. Oncol. 29(Suppl.), Abstract 3027 (2011).
  • Engelman JA, Zejnullahu K, Gale CM et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007).
  • Miller VA, Hirsch V, Cadranel J et al. Afatinib versus placebo for patients with advanced, metastatic non-small cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 13, 528–538 (2012).
  • Wong KK, Fracasso PM, Bukowski RM et al. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin. Cancer Res. 15, 2552–2558 (2009).
  • Cappuzzo F, Ligorio C, Janne PA et al. Prospective Study of Gefitinib in Epidermal Growth Factor Receptor Fluorescence In Situ Hybridization–Positive/Phospho-Akt–Positive or Never Smoker Patients With Advanced Non–Small-Cell Lung Cancer: The ONCOBELL Trial. J Clin Oncol. 2007; 25(16): 2248-2255

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.