90
Views
16
CrossRef citations to date
0
Altmetric
Review

Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors Part 4: p53 signaling pathway

Pages 177-191 | Published online: 10 Jan 2014

References

  • Newton HB. Primary brain tumors: review of etiology, diagnosis, and treatment. Am. Fam. Physician49, 787–797 (1994).
  • Davis FG, McCarthy BJ. Current epidemiological trends and surveillance issues in brain tumors. Expert Rev. Anticancer Ther.1, 395–401 (2001).
  • Newton HB. Neurological complications of systemic cancer. Am. Fam. Physician59, 878–886 (1999).
  • Wen PY, Loeffler JS. Management of brain metastases. Oncology13, 941–961 (1999).
  • Newton HB, Turowski RC, Stroup TJ, McCoy LK. Clinical presentation, diagnosis, and pharmacotherapy of patients with primary brain tumors. Ann. Pharmacother.33, 816–832 (1999).
  • Fine HA, Dear KBG, Loeffler JS, Black PM, Canellos GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer71, 2585–2597 (1993).
  • Newton HB. Chemotherapy for the treatment of metastatic brain tumors. Expert Rev. Anticancer Ther.2, 495–506 (2002).
  • Chung RY, Seizinger BR. Tumor suppressor genes and cancer of the human nervous system. Cancer Investig.9, 429–438 (1991).
  • von Deimling A, Louis DN, Wiestler OD. Molecular pathways in the formation of gliomas. Glia15, 328–338 (1995).
  • Shapiro JR, Coons SW. Genetics of adult malignant gliomas. BNI Q14, 27–42 (1998).
  • Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15, 1311–1333 (2001).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: growth factor and Ras signaling pathways. Expert Rev. Anticancer Ther.3, 89–108 (2003).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther.4, 105–128 (2004).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 3: brain tumor invasiveness. Expert Rev. Anticancer Ther.4(5), 803–821 (2004).
  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res.54, 4855–4878 (1994).
  • Ozbun MA, Butel JS. Tumor suppressor p53 mutations and breast cancer: a critical analysis. Adv. Cancer Res.66, 71–141 (1995).
  • Harris CC. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J. Natl Cancer Inst.88, 1442–1455 (1996).
  • Ozbun MA, Butel JS. p53 tumor suppressor gene: structure and function. In: Encyclopedia of Cancer. Volume II. Bertino JR (Ed.), Academic Press, CA, USA, 1240–1257 (1997).
  • Malkin D. The role of p53 in human cancer. J. Neurooncol.51, 231–243 (2001).
  • Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res.60, 6788–6793 (2000).
  • Kaelin WG. The emerging p53 gene family. J. Natl Cancer Inst.91, 594–598 (1999).
  • Soussi T, Caron de Fromentel C, May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene5, 945–952 (1990).
  • Montenarh M. Biochemical, immunological, and functional aspects of the growth suppressor/oncoprotein p53. Crit. Rev. Oncogenesis3, 233–256 (1992).
  • Lees-Miller SP, Sakaguchi K, Ullrich SJ, Appella E, Anderson CW. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol. Cell Biol.12, 5041–5049 (1992).
  • Ashcroft M, Vousden KH. p53 tumor suppressor protein. In: Tumor Suppressor Genes in Human Cancer. Fisher DE (Ed.), Humana Press Inc., NJ, USA, 7, 159–181 (2001).
  • Giannakakou P, Sackett DL, Ward Y, Webster KR, Blagosklonny MV, Fojo T. p53 is associated with cellular microtubules and uses dynein-dependent transport for nuclear accumulation. Nature Cell Biol.2, 709–717 (2000).
  • Slingerland JM, Jenkins JR, Benchimol S. The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J.12, 1029–1037 (1993).
  • Calabretta M, Kaczmarek L, Selleri L et al. Growth-dependent expression of human Mr 53,000 tumor antigen messenger RNA in normal and neoplastic cells. Cancer Res.46, 5738–5742 (1986).
  • Dittmer D, Pati S, Zambetti G et al. Gain of function mutations in p53. Nature Genet.4, 42–46 (1993).
  • Friedman PN, Chen X, Bargonetti J, Prives C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc. Natl Acad. Sci.90, 3319–3323 (1993).
  • Hoppe-Seyler F, Butz K. Molecular mechanisms of virus-induced carcinogenesis: the interactions of viral factors with cellular tumor suppressor proteins. J. Mol. Med.73, 529–538 (1995).
  • Freedman DA, Levine AJ. Regulation of the p53 protein by the mdm2 oncoprotein – thirty-eighth G. H. A. Clowes Memorial Award Lecture. Cancer Res.59, 1–7 (1999).
  • Woods DB, Vousden KH. Regulation of p53 function. Exp. Cell Res.264, 56–66 (2001).
  • Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR. Molecular mechanism of the interaction between mdm2 and p53. J. Mol. Biol.2, 491–501 (2002).
  • Michael D, Oren M. The p53 and mdm2 families. Curr. Opin. Mol. Cell Biol.2, 53–59 (2002).
  • Kussie PH, Gorina S, Marechal V et al. Structure of the mdm2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274, 948–953 (1996).
  • Schon O, Friedler A, Bycroft M, Freund SMV, Fersht AR. Molecular mechanism of the interaction betweem mdm2 and p53. J. Mol. Biol.323, 491–501 (2002).
  • Fang S, Jensen JP, Ludwig RL, Vousden DH, Weissman AM. mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem.275, 8945–8951 (2000).
  • Dornan D, Wertz I, Shimizu H et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature429, 86–92 (2004).
  • Leng RP, Lin Y, Ma W et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell112, 779–791 (2003).
  • Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the mdm2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res.53, 2736–2739 (1993).
  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nature Genet.1, 45–49 (1992).
  • El-Deiry WS. Regulation of p53 downstream genes. Semin. Cancer Biol.8, 345–357 (1998).
  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell75, 805–816 (1993).
  • El-Deiry WS, Tokino T, Velculescu VE et al. WAF1, a potential mediator of p53 tumor suppression. Cell75, 817–825 (1993).
  • Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature369, 574–578 (1994).
  • Chin PL, Momand J, Pfeifer GP. In vivo evidence for binding of p53 to consensus binding sites in the p21 and GADD45 genes in response to ionizing radiation. Oncogene15, 87–99 (1999).
  • Wang XM, Zhan Q, Coursen JD et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl Acad. Sci.96, 3706–3711 (1999).
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell80, 293–299 (1995).
  • Villunger A, Michalak EM, Coultas L et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and Noxa. Science302, 1036–1038 (2003).
  • Nagata S. Apoptosis by death factor. Cell88, 355–365 (1997)
  • Ashkanazi A, Dixit VM. Death receptors: signaling and modulation. Science281, 1305–1308 (1998).
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science253, 49–53 (1991).
  • Louis DN, Von Deimling A, Chung RY et al. Comparative study of p53 gene and protein alterations in human astrocytic tumors. J. Neuropath. Exp. Neurol.52, 31–38 (1993).
  • Louis DN. The p53 gene and protein in human brain tumors. J. Neuropath. Exp. Neurol.53, 11–21 (1994).
  • Wu JK, Ye Z, Darras BT. Frequency of p53 tumor suppressor gene mutations in human primary brain tumors. Neurosurgery33, 824–831 (1993).
  • Choi W, Lang F, Zhang W. Functional inactivation of p53 in gliomas. In: Genomic and Molecular Neuro-Oncology. Zhang W, Fuller GN (Eds.), Jones and Bartlett Publishers, MA, USA, 3, 31–46 (2004).
  • Kyritsis AP, Bondy ML, Xiao M, et al. Germline p53 mutations in subsets of glioma patients. J. Natl Cancer Inst.86, 344–349 (1994).
  • von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR, Louis DN. Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol.3, 19–26 (1993).
  • Chozick BS, Weicker ME, Pezzullo JC et al. Pattern of mutant p53 expression in human astrocytomas suggests the existence of alternate pathways of tumorigenesis. Cancer73, 406–415 (1994).
  • Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science286, 2507–2510 (1999).
  • Hupp TR, Lane DP, Ball KL. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J.352, 1–17 (2000).
  • Lane DP, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol. Med.8, S38–S42 (2002).
  • Lane D. p53 from pathway to therapy. Carcinogenesis25, 1077–1081 (2004).
  • Selivanova G, Kawasaki T, Ryabchenko L, Wiman KG. Reactivation of mutant p53: a new strategy for cancer therapy. Semin. Cancer Biol.8, 369–378 (1998).
  • Selivanova G, Iotsova V, Okan I et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature Med.3, 632–638 (1997).
  • Freidler A, Hansson LO, Veprintsev DB et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl Acad. Sci.99, 937–942 (2002).
  • Lee JM, Bernstein A. Apoptosis, cancer and the p53 tumor suppressor gene. Cancer Metastasis Rev.14, 149–161 (1995).
  • Badie B, Drazan KE, Kramar MH, Shaked A, Black KL. Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol. Res.17, 209–216 (1995).
  • Gomez-Manzano CX, Fueyo J, Kyritsis AP et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res.56, 694–699 (1996).
  • Cirielli C, Inyaku K, Capogrossi MC, Yuan X, Williams JA. Adenovirus-mediated wild-type p53 expression induces apoptosis and suppresses tumorigenesis of experimental intracranial human malignant glioma. J. Neurooncol.43, 99–108 (1999).
  • Fulci G, Chiocca EA. Oncolytic viruses for the therapy of brain tumors and other solid malignancies: a review. Front. Biosci.8, E346–E360 (2003).
  • Gomez-Manzano C, Yung WKA, Alemany R, Fueyo J. Genetically modified adenoviruses against gliomas. From bench to bedside. Neurology63, 418–426 (2004).
  • Lang FF, Burger J, Fuller GN et al. Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. J. Clin. Oncol.21, 2508–2518 (2003).
  • Vecil GG, Lang FF. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J. Neurooncol.65, 237–246 (2003).
  • McCormick F. Interactions between adenovirus proteins and the p53 pathway: the development of ONYX-015. Semin. Cancer Biol.10, 453–459 (2000).
  • Geoerger B, Grill J, Opolon P et al. Oncolytic activity of the E1B-55kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignanat glioma xenografts. Cancer Res.62, 764–772 (2002).
  • Geoerger B, Grill J, Opolon P et al. Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts. Br. J. Cancer89, 577–584 (2003).
  • Geoerger B, Vassal G, Opolon P et al. Oncolytic activity of p53-expressing conditionally replicative adenovirus ad24-p53 against human malignant glioma. Cancer Res.64, 5753–5759 (2004).
  • Gomez-Manzano C, Balague C, Alemany R et al. A novel E1A-E1B mutant adenovirus induces glioma regression in vivo. Oncogene23, 1821–1828 (2003).
  • Park KH, Lee J, Yoo CH et al. Application of p27 gene therapy for human malignant glioma potentiated by using mutant p27. J. Neurosurg.101, 505–510 (2004).
  • Ball KL, Lain S, Fahraeus R, Smythe C, Lane DP. Cell-cycle arrest and inhibition of Cdk4 activity by small peptides based on the carboxy-terminal domain of p21Waf1. Curr. Biol.7, 71–80 (1997).
  • Mutoh M, Lung FD, Roller PP, Sikorski RS, O’Conner PM. A p21(Waf1/Cip1) carboxyl-terminal peptide exhibited cyclin-dependent kinase-inhibitory activity and cytotoxicity when introduced into human cells. Cancer Res.59, 3480–3488 (1999).
  • Cosulich SC, Worralt V, Hedge PJ, Green S, Clarke PR. Regulation of apoptosis by BH3 domains in a cell-free system. Curr. Biol.7, 913–920 (1997).
  • Caspari T. How to activate p53. Curr. Biol.10, R315–R317 (2000).
  • Sherr CJ. The INK4a/ARF network in tumor suppression. Nature Rev. Mol. Cell Biol.2, 731–737 (2001).
  • Wang H, Zeng X, Oliver P et al. mdm2 oncogene as a target for cancer therapy: an antisense approach. Int. J. Oncol.15, 653–660 (1999).
  • Lu W, Chen L, Peng Y, Chen J. Activation of p53 by roscovitine-mediated suppression of mdm2 expression. Oncogene20, 3206–3216 (2001).
  • Whittaker SR, Walton MI, Garrett MD, Workman P. The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res.64, 262–272 (2004).
  • Kim EH, Kim SU, Shin D, Choi KS. Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of surviving and XIAP. Oncogene23, 446–456 (2004).
  • Böttger A, Böttger V, Sparks A, Liu WL, Howard SF, Lane DP. Design of a synthetic mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol.7, 860–869 (1997).
  • Duncan SJ, Grüschow S, Williams DH, et al. Isolation and structure elucidation of chlorofusin, a novel p53–mdm2 antagonist from a Fusarium sp. J. Am. Chem. Soc.123, 554–560 (2001).
  • Zhao J, Wang M, Chen J et al. The initial evaluation of non-peptidic small-molecule hdm2 inhibitors based on p53–hdm2 complex structure. Cancer Lett.183, 69–77 (2002).
  • Chène P, Fuchs J, Bohn J, García-Echeverría C, Furet P, Fabbro D. A small synthetic peptide, which inhibits the p53–hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol.299, 245–253 (2000).
  • Lain S, Xirodimas D, Lane DP. Accumulating active p53 in the nucleus by inhibition of nuclear export: a novel study to promote the p53 tumor suppressor function. Exp. Cell Res.253, 315–324 (1999).
  • Garrett MD, Workman P. Discovering novel chemotherapeutic drugs for the third millennium. Eur. J. Cancer35, 2010–2030 (1999).
  • Gelman KA, Eisenhauer EA, Harris AL, Ratain MJ, Workman P. Anticancer agents targeting signaling molecules and cancer cell environments: challenges for drug development? J. Natl Cancer. Inst.91, 1281–1287 (1999).
  • Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol.62, 1311–1336 (2001).
  • Workman P. The impact of genomic and proteomic technologies on the development of new cancer drugs. Ann. Oncol.13, 115–124 (2002).
  • Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene22, 2065–2072 (2003).
  • van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR. Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res.62, 6165–6171 (2002).
  • Heise C, Lemmon M, Kirn D. Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin. Cancer Res.6, 4908–4918 (2000).
  • Lamfers ML, Grill J, Dirven CM et al. Potential of the conditionally replicative adenovirus ad5-δ24RGD in the treatment of malignant gliomas and its enhanced effect with chemotherapy. Cancer Res.62, 5736–5742 (2002).
  • Groothuis DR. The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neurooncology1, 45–59 (2000).
  • Degen JW, Walbridge S, Vortmeyer AO, Oldfield EH, Lonser RR. Safety and efficacy of convection-enhanced delivery of gemcitabine or carboplatin in a malignant glioma model in rats. J. Neurosurg.99, 893–898 (2003).
  • Lidar Z, Mardor Y, Jonas T et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical trial. J. Neurosurg.100, 472–479 (2004).
  • Scheck AC. Molecular biology of chemotherapy and resistance. BNI Q14, 43–54 (1998).
  • Clarke PA, te Poele R, Wooster R, Workman P. Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem. Pharmacol.62, 1311–1336 (2001).
  • Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J. Clin. Oncol.20, 1932–1941 (2001).
  • Mohr S, Leikauf GD, Keith G, Rihn BH. Microarrays as cancer keys: an array of possibilities. J. Clin. Oncol.20, 3165–3175 (2002).
  • Sturla LM, Fernandez-Teijeiro A, Pomeroy SL. Application of microarrays to neurological disease. Arch. Neurol.60, 676–682 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.