46
Views
14
CrossRef citations to date
0
Altmetric
Review

Vaccination strategies for the prevention of cervical cancer

, &
Pages 97-107 | Published online: 10 Jan 2014

References

  • International Agency for Research on Cancer (IARC). Human Papillomaviruses. Monographs on the evaluation of carcinogenic risks to humans. IARC/WHO, Lyon, France 64 (1995).
  • Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br. J. Cancer88, 63–73 (2003).
  • Bosch FX, Manos MM, Munoz N et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group. J. Natl Cancer Inst.87, 796–802 (1995).
  • International Agency for Research on Cancer (IARC). The current status of development of prophylactic vaccines against human papillomavirus infection. Report of a technical meting, Geneva, 16–18 Februrary, 1999. IARC/World Health Organization, Lyon, France (1999).
  • Pisani P, Parkin DM, Ferlay J. Estimates of the worldwide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int. J. Cancer55, 891–903 (1993).
  • Sitas F, Blaauw D, Terblanche M, Madhoo J, Carrara H. National Cancer Registry of South Africa, South African Institute for Medical Research, Johannesburg (1998).
  • de Villiers E-M, Fauquet C, Broker TR, Bernard HU, zur Hausen H. Classification of papillomaviruses. Virology324, 17–27 (2004).
  • zur Hausen H, de Villiers E-M. Human papillomaviruses. Ann. Rev. Microbiol.48, 427–447 (1994).
  • Munoz N, Bosch FX, de Sanjose S et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med.348, 518–527 (2003).
  • Baker TS, Newcomb WW, Olson NH et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J.60, 1445–1456 (1991).
  • Finnen RL, Erickson KD, Chen XS, Garcea RL. Interactions between papillomavirus L1 and L2 capsid proteins. J. Virol.77, 4818–4826 (2003).
  • Howley PM, Lowy D. Fields Virology. Fields BN, Knipe DM, Howley PM et al. (Eds), Lippincott–Raven Publishers, PA, USA, 2197–2230 (2001).
  • Howley PM. Fields Virology. Fields BN, Knipe DM, Howley PM et al. (Eds), Lippincott–Raven Publishers, PA, USA, 2045–2073 (1996).
  • Pater MM, Mittal R, Pater A. Role of steroid hormones in potentiating transformation of cervical cells by human papillomaviruses. Trends Microbiol.2, 229–234 (1994).
  • Ullman C, Emery V. Transforming proteins of human papillomavirus. Rev. Med. Virol.6, 39–55 (1996).
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA89, 12180–12184 (1992).
  • Rose RC, Bonnez W, Reichman RC, Garcea RL. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J. Virol.67, 1936–1944 (1993).
  • Sasagawa T, Pushko P, Steers G et al. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology206, 126–135 (1995).
  • Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J. Virol.77, 9211–9220 (2003).
  • Warzecha H, Mason HS, Lane C et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol.77, 8702–8711 (2003).
  • Varsani A, Williamson AL, Rose RC, Jaffer M, Rybicki EP. Expression of human papillomavirus type 16 major capsid protein in transgenic Nicotiana tabacum cv. Xanthi.Arch. Virol.148, 1771–1786 (2003).
  • Nardelli-Haefliger D, Roden RB, Benyacoub J et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect. Immun.65, 3328–3336 (1997).
  • Kirnbauer R, Taub J, Greenstone H et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol.67, 6929–6936 (1993).
  • Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol.67, 315–322 (1993).
  • Zhou J, Sun XY, Louis K, Frazer IH. Interaction of human papillomavirus (HPV) type 16 capsid proteins with HPV DNA requires an intact L2 N-terminal sequence. J. Virol.68, 619–625 (1994).
  • Heino P, Skyldberg B, Lehtinen M et al. Human papillomavirus type 16 capsids expose multiple type-restricted and type-common antigenic epitopes. J. Gen. Virol.76(Pt 5), 1141–1153 (1995).
  • Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT. Interaction of papillomaviruses with the cell surface. J. Virol.68, 7260–7266 (1994).
  • Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T. Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J. Virol.73, 6188–6190 (1999).
  • Miller M, Hinman AR. Vaccines. Plotkin SA, Orenstein WA (Eds), WB Saunders Company, PA, USA, 1047–1088 (1999).
  • Taira AV. Evaluating human papillomavirus vaccination programs. Emerg. Infect. Dis.10, 1915–1923 (2004).
  • McGhee JR, Mestecky J, Dertzbaugh MT et al. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine10, 75–88 (1992).
  • Elfgren K, Bistoletti P, Dillner L et al. Conization for cervical intraepithelial neoplasia is followed by disappearance of human papillomavirus deoxyribonucleic acid and a decline in serum and cervical mucus antibodies against human papillomavirus antigens. Am. J. Obstet. Gynecol.174, 937–942 (1996).
  • Sasagawa T, Rose RC, Azar KK, Sakai A, Inoue M. Mucosal immunoglobulin-A and -G responses to oncogenic human papilloma virus capsids. Int. J. Cancer104, 328–335 (2003).
  • Bontkes HJ, de Gruijl TD, Walboomers JM et al. Immune responses against human papillomavirus (HPV) type 16 virus-like particles in a cohort study of women with cervical intraepithelial neoplasia. II. Systemic but not local IgA responses correlate with clearance of HPV-16. J. Gen. Virol.80(Pt 2), 409–417 (1999).
  • Kirnbauer R, Chandrachud LM, O’Neil BW et al. Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology219, 37–44 (1996).
  • Suzich JA, Ghim SJ, Palmer-Hill FJ et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl. Acad. Sci. USA92, 11553–11557 (1995).
  • Ho GY, Studentsov Y, Hall CB et al. Risk factors for subsequent cervicovaginal human papillomavirus (HPV) infection and the protective role of antibodies to HPV-16 virus-like particles. J. Infect. Dis.186, 737–742 (2002).
  • Li A, Yang J, Lai BC et al. Study of immune responses induced by human papillomavirus type 18 L1-E6 and L1-E7 chimeric gene DNA vaccines in mice. Xi. Bao. Yu Fen. Zi. Mian. Yi. Xue. Za Zhi.20, 760–763 (2004).
  • Koutsky LA. Epidemiology of genital human papillomavirus infections. Am. J. Med.102, 3–8 (1997).
  • Heller DS, Hameed M, Cracchiolo B et al. Presence and quantification of macrophages in squamous cell carcinoma of the cervix. Int. J. Gynecol. Cancer13, 67–70 (2003).
  • Coleman N, Birley HD, Renton AM et al. Immunological events in regressing genital warts. Am. J. Clin. Pathol.102, 768–774 (1994).
  • Welters MJ, de Jong A, van den Eeden SJ et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res.63, 636–641 (2003).
  • Shepherd PS, Rowe AJ, Cridland JC et al. Proliferative T-cell responses to human papillomavirus type 16 L1 peptides in patients with cervical dysplasia. J. Gen. Virol.77(Pt 4), 593–602 (1996).
  • de Gruijl TD, Bontkes HJ, Walboomers JM et al. Analysis of IgG reactivity against human papillomavirus type-16 E7 in patients with cervical intraepithelial neoplasia indicates an association with clearance of viral infection: results of a prospective study. Int. J. Cancer68, 731–738 (1996).
  • Ressing ME, Sette A, Brandt RM et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA- A*0201-binding peptides. J. Immunol.154, 5934–5943 (1995).
  • Zhang LF, Zhou J, Chen S et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine18, 1051–1058 (2000).
  • de Jong A, van der Burg SH, Kwappenberg KM et al. Frequent detection of human papillomavirus 16 E2-specific T-helper immunity in healthy subjects. Cancer Res.62, 472–479 (2002).
  • Rose RC, Bonnez W, Da Rin C, McCance DJ, Reichman RC. Serological differentiation of human papillomavirus types 11, 16 and 18 using recombinant virus-like particles. J. Gen. Virol.75(Pt 9), 2445–2449 (1994).
  • Combita AL, Touze A, Bousarghin L, Christensen ND, Coursaget P. Identification of two cross-neutralizing linear epitopes within the L1 major capsid protein of human papillomaviruses. J. Virol.76, 6480–6486 (2002).
  • Bousarghin L, Combita-Rojas AL, Touze A et al. Detection of neutralizing antibodies against human papillomaviruses (HPV) by inhibition of gene transfer mediated by HPV pseudovirions. J. Clin. Microbiol.40, 926–932 (2002).
  • Bousarghin L, Combita AL, Touze A, Debrus S, Coursaget P. Immunization with HPV L1 VLPs induced cross-neutralizing antibodies. 20th International Papillomavirus Conference, Paris (2002) (Abstract P456).
  • Villa L, Costa R, Petta C et al. A dose-ranging safety and immunogenicity study of a quadrivalent HPV (types 6/11/16/18) L1 VLP vaccine in women. 20th International Papillomavirus Conference, Paris (2002) (Abstract O099).
  • Cason J, Kaye JN, Jewers RJ et al. Perinatal infection and persistence of human papillomavirus types 16 and 18 in infants. J. Med. Virol.47, 209–218 (1995).
  • Bosch FX, Castellsague X, Munoz N et al. Male sexual behavior and human papillomavirus DNA: key risk factors for cervical cancer in Spain. J. Natl Cancer Inst.88, 1060–1067 (1996).
  • Hughes JP, Garnett GP, Koutsky L. The theoretical population-level impact of a prophylactic human papilloma virus vaccine. Epidemiology13, 631–639 (2002).
  • Stanberry LR, Spruance SL, Cunningham AL et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N. Engl. J. Med.347, 1652–1661 (2002).
  • Lowy DR, Kirnbauer R, Schiller JT. Genital human papillomavirus infection. Proc. Natl Acad. Sci. USA91, 2436–2440 (1994).
  • Rose RC, Reichman RC, Bonnez W. Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. J. Gen. Virol.75(Pt 8), 2075–2079 (1994).
  • Christensen ND, Hopfl R, DiAngelo SL et al. Assembled baculovirus-expressed human papillomavirus type 11 L1 capsid protein virus-like particles are recognized by neutralizing monoclonal antibodies and induce high titres of neutralizing antibodies. J. Gen. Virol.75(Pt 9), 2271–2276 (1994).
  • Tobery TW, Smith JF, Kuklin N et al. Effect of vaccine delivery system on the induction of HPV16L1-specific humoral and cell-mediated immune responses in immunized rhesus macaques. Vaccine21, 1539–1547 (2003).
  • Brown DR, Bryan JT, Schroeder JM et al. Neutralization of human papillomavirus type 11 (HPV-11) by serum from women vaccinated with yeast-derived HPV-11 L1 virus-like particles: correlation with competitive radioimmunoassay titer. J. Infect. Dis.184, 1183–1186 (2001).
  • Harro CD, Pang YY, Roden RB et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J. Natl Cancer Inst.93, 284–292 (2001).
  • Campo MS, Grindlay GJ, O’Neil BW et al. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J. Gen. Virol.74(Pt 6), 945–953 (1993).
  • Christensen ND, Reed CA, Cladel NM, Han R, Kreider JW. Immunization with viruslike particles induces long-term protection of rabbits against challenge with cottontail rabbit papillomavirus. J. Virol.70, 960–965 (1996).
  • Jin XW, Cowsert L, Marshall D et al. Bovine serological response to a recombinant BPV-1 major capsid protein vaccine. Intervirology31, 345–354 (1990).
  • Ohlschlager P, Osen W, Dell K et al. Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T-lymphocytes and tumor regression in C57BL/6 mice. J. Virol.77, 4635–4645 (2003).
  • Rose RC, White WI, Li M et al. Human papillomavirus type 11 recombinant L1 capsomeres induce virus-neutralizing antibodies. J. Virol.72, 6151–6154 (1998).
  • Fligge C, Giroglou T, Streeck RE, Sapp M. Induction of type-specific neutralizing antibodies by capsomeres of human papillomavirus type 33. Virology283, 353–357 (2001).
  • Lowe RS, Brown DR, Bryan JT et al. Human papillomavirus type 11 (HPV-11) neutralizing antibodies in the serum and genital mucosal secretions of African green monkeys immunized with HPV-11 virus-like particles expressed in yeast. J. Infect. Dis.176, 1141–1145 (1997).
  • Rose RC, Lane C, Wilson S et al. Oral vaccination of mice with human papillomavirus virus-like particles induces systemic virus-neutralizing antibodies. Vaccine17, 2129–2135 (1999).
  • Gerber S, Lane C, Brown DM et al. Human papillomavirus virus-like particles are efficient oral immunogens when coadministered with Escherichia coli heat-labile enterotoxin mutant R192G or CpG DNA. J. Virol.75, 4752–4760 (2001).
  • Balmelli C, Roden R, Potts A et al. Nasal immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J. Virol.72, 8220–8229 (1998).
  • Lin YL, Borenstein LA, Selvakumar R, Ahmed R, Wettstein FO. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology187, 612–619 (1992).
  • Gaukroger JM, Chandrachud LM, O’Neil BW et al. Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J. Gen. Virol.77(Pt 7), 1577–1583 (1996).
  • Greenstone HL, Nieland JD, de Visser KE et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA95, 1800–1805 (1998).
  • Wakabayashi MT, Da Silva DM, Potkul RK, Kast WM. Comparison of human papillomavirus type 16 L1 chimeric virus-like particles versus L1/L2 chimeric virus-like particles in tumor prevention. Intervirology45, 300–307 (2002).
  • Kawana K, Kawana Y, Yoshikawa H et al. Nasal immunization of mice with peptide having a cross-neutralization epitope on minor capsid protein L2 of human papillomavirus type 16 elicit systemic and mucosal antibodies. Vaccine19, 1496–1502 (2001).
  • Aoki Y, Tosato G. Neoplastic conditions in the context of HIV-1 infection. Curr. HIV Res.2, 343–349 (2004).
  • Varsani A, Williamson AL, de Villiers D et al. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J. Virol.77, 8386–8393 (2003).
  • Evans TG, Bonnez W, Rose RC et al. A Phase 1 study of a recombinant virus-like particle vaccine. J. Infect. Dis.183, 1485–1493 (2001).
  • Koutsky LA, Ault KA, Wheeler CM et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med.347, 1645–1651 (2002).
  • Harper DM, Franco EL, Wheeler C et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364, 1757–1765 (2004).
  • Ault KA, Giuliano AR, Edwards RP et al. A Phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine. Vaccine22, 3004–3007 (2004).
  • Fife KH, Wheeler CM, Koutsky LA et al. Dose-ranging studies of the safety and immunogenicity of human papillomavirus type 11 and type 16 virus-like particle candidate vaccines in young healthy women. Vaccine22, 2943–2952 (2004).
  • Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology185, 251–257 (1991).
  • Zhou JA, McIndoe A, Davies H, Sun XY, Crawford L. The induction of cytotoxic T-lymphocyte precursor cells by recombinant vaccinia virus expressing human papillomavirus type 16 L1. Virology181, 203–210 (1991).
  • Gao L, Chain B, Sinclair C et al. Immune response to human papillomavirus type 16 E6 gene in a live vaccinia vector. J. Gen. Virol.75(Pt 1), 157–164 (1994).
  • Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y. Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J. Virol.75, 9654–9664 (2001).
  • Baxby D. Recombinant poxvirus vaccines. Rev. Med. Microbiol.4, 80–88 (1993).
  • Rosales C, Graham VV, Rosas GA, Merchant H, Rosales R. A recombinant vaccinia virus containing the papilloma E2 protein promotes tumor regression by stimulating macrophage antibody-dependent cytotoxicity. Cancer Immunol. Immunother.49, 347–360 (2000).
  • Valdez G, Sutter G, Jose MV et al. Human tumor growth is inhibited by a vaccinia virus carrying the E2 gene of bovine papillomavirus. Cancer88, 1650–1662 (2000).
  • Vancott JL, Staats HF, Pascual DW et al. Regulation of mucosal and systemic antibody responses by T-helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J. Immunol.156, 1504–1514 (1996).
  • Nardelli-Haefliger D, Kraehenbuhl JP, Curtiss R et al. Oral and rectal immunization of adult female volunteers with a recombinant attenuated Salmonella typhi vaccine strain. Infect. Immun.64, 5219–5224 (1996).
  • Srinivasan J, Tinge S, Wright R, Herr JC, Curtiss R. Oral immunization with attenuated Salmonella expressing human sperm antigen induces antibodies in serum and the reproductive tract. Biol. Reprod.53, 462–471 (1995).
  • Newton SM, Jacob CO, Stocker BA. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science244, 70–72 (1989).
  • Revaz V, Benyacoub J, Kast WM et al. Mucosal vaccination with a recombinant Salmonella typhimurium expressing human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) or HPV16 VLPs purified from insect cells inhibits the growth of HPV16-expressing tumor cells in mice. Virology279, 354–360 (2001).
  • Krul MR, Tijhaar EJ, Kleijne JA et al. Induction of an antibody response in mice against human papillomavirus (HPV) type 16 after immunization with HPV recombinant Salmonella strains. Cancer Immunol. Immunother.43, 44–48 (1996).
  • Baud D, Benyacoub J, Kok M et al. Improved Salmonella-based prophylactic vaccines against HPV16. 20th International Papillomavirus Conference, Paris (2002) (Abstract P455).
  • Abdelhak S, Louzir H, Timm J et al. Recombinant BCG expressing the leishmania surface antigen Gp63 induces protective immunity against leishmania major infection in BALB/c mice. Microbiology141(Pt 7), 1585–1592 (1995).
  • Stover CK, Bansal GP, Hanson MS et al. Protective immunity elicited by recombinant bacille Calmette–Guerin (BCG) expressing outer surface protein A(OspA) lipoprotein: a candidate lyme disease vaccine. J. Exp. Med.178, 197–209 (1993).
  • Langermann S, Palaszynski SR, Burlein JE et al. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette–Guérin vaccines expressing pneumococcal surface protein A. J. Exp. Med.180, 2277–2286 (1994).
  • Jabbar IA, Fernando GJ, Saunders N et al. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine18, 2444–2453 (2000).
  • Lin CW, Lee JY, Tsao YP et al. Oral vaccination with recombinant listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int. J. Cancer102, 629–637 (2002).
  • Liu MA. DNA vaccines: a review. J. Intern. Med.253, 402–410 (2003).
  • Rocha-Zavaleta L, Alejandre JE, Garcia-Carranca A. Parenteral and oral immunization with a plasmid DNA expressing the human papillomavirus 16-L1 gene induces systemic and mucosal antibodies and cytotoxic T-lymphocyte responses. J. Med. Virol.66, 86–95 (2002).
  • Donnelly JJ, Martinez D, Jansen KU et al. Protection against papillomavirus with a polynucleotide vaccine. J. Infect. Dis.173, 314–320 (1996).
  • Liu WJ, Gao F, Zhao KN et al. Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and antitumour activity. Virology301, 43–52 (2002).
  • Moore RA, Santos EB, Nicholls PK et al. Intraepithelial DNA immunization with a plasmid encoding a codon optimized COPV E1 gene sequence, but not the wild type gene sequence completely protects against mucosal challenge with infectious COPV in beagles. Virology304, 451–459 (2002).
  • Habeck M. Cervical dysplasia: encapsulated DNA treatment shows promise. Drug Discov. Today8, 3–4 (2003).
  • Chen C, Wang T, Hung C, Pardoll DM, Wu T. Boosting with recombinant vaccinia increases HPV-16 E7-specific T-cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine18, 2015–2022 (2000).
  • Kowalczyk DW, Wlazlo AP, Shane S, Ertl HC. Vaccine regimen for prevention of sexually transmitted infections with human papillomavirus type 16. Vaccine19, 3583–3590 (2001).
  • Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc. Natl Acad. Sci. USA92, 3358–3361 (1995).
  • Haq TA, Mason HS, Clements JD, Arntzen CJ. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science268, 714–716 (1995).
  • Richter L, Mason HS, Arntzen CJ. Transgenic plants created for oral immunization against diarrheal diseases. J. Travel Med.3, 52–56 (1996).
  • Franconi R, Di Bonito P, Dibello F et al. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res.62, 3654–3658 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.