198
Views
36
CrossRef citations to date
0
Altmetric
Review

Current treatment for Ewing’s sarcoma

, &
Pages 319-331 | Published online: 10 Jan 2014

References

  • Rodriguez-Galindo C, Spunt SL, Pappo AS. Treatment of Ewing sarcoma family of tumors: current status and outlook for the future. Med. Pediatr. Oncol. 40(5), 276–287 (2003).
  • Scully SP, Temple HT, O’Keefe RJ, Scarborough MT, Mankin HJ, Gebhardt MC. Role of surgical resection in pelvic Ewing’s sarcoma. J. Clin. Oncol. 13(9), 2336–2341 (1995).
  • Nesbit ME Jr, Gehan EA, Burgert EO Jr et al. Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup study. J. Clin. Oncol. 8(10), 1664–1674 (1990).
  • Burgert EO Jr, Nesbit ME, Garnsey LA et al. Multimodal therapy for the management of nonpelvic, localized Ewing’s sarcoma of bone: intergroup study IESS-II. J. Clin. Oncol. 8(9), 1514–1524 (1990).
  • Smith MA, Ungerleider RS, Horowitz ME, Simon R. Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J. Natl Cancer Inst. 83(20), 1460–1470 (1991).
  • Miser JS, Kinsella TJ, Triche TJ et al. Ifosfamide with mesna uroprotection and etoposide: an effective regimen in the treatment of recurrent sarcomas and other tumors of children and young adults. J. Clin. Oncol. 5(8), 1191–1198 (1987).
  • Paulussen M, Ahrens S, Dunst J et al. Localized Ewing tumor of bone: final results of the cooperative Ewing’s Sarcoma Study CESS 86. J. Clin. Oncol. 19(6), 1818–1829 (2001).
  • Craft A, Cotterill S, Malcolm A et al. Ifosfamide-containing chemotherapy in Ewing’s sarcoma: The Second United Kingdom Children’s Cancer Study Group and the Medical Research Council Ewing’s Tumor Study. J. Clin. Oncol. 16(11), 3628–3633 (1998).
  • Grier HE, Krailo MD, Tarbell NJ et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N. Engl. J. Med. 348(8), 694–701 (2003).
  • Wexler LH, DeLaney TF, Tsokos M et al. Ifosfamide and etoposide plus vincristine, doxorubicin, and cyclophosphamide for newly diagnosed Ewing’s sarcoma family of tumors. Cancer 78(4), 901–911 (1996).
  • Bacci G, Picci P, Ferrari S et al. Neoadjuvant chemotherapy for Ewing’s sarcoma of bone: no benefit observed after adding ifosfamide and etoposide to vincristine, actinomycin, cyclophosphamide, and doxorubicin in the maintenance phase – results of two sequential studies. Cancer 82(6), 1174–1183 (1998).
  • Craft AW, Paulussen M, Douglas EC. Early results of an international Ewings tumour study. Med. Pediatr. Oncol. 35, 191 (2000) (Abstract).
  • Womer RB, Daller RT, Fenton JG, Miser JS. Granulocyte colony stimulating factor permits dose intensification by interval compression in the treatment of Ewing’s sarcomas and soft tissue sarcomas in children. Eur. J. Cancer 36(1), 87–94 (2000).
  • Kushner BH, Meyers PA, Gerald WL et al. Very-high-dose short-term chemotherapy for poor-risk peripheral primitive neuroectodermal tumors, including Ewing’s sarcoma, in children and young adults. J. Clin. Oncol. 13(11), 2796–2804 (1995).
  • Marina NM, Pappo AS, Parham DM et al. Chemotherapy dose-intensification for pediatric patients with Ewing’s family of tumors and desmoplastic small round-cell tumors: a feasibility study at St. Jude Children’s Research Hospital. J. Clin. Oncol. 17(1), 180–190 (1999).
  • Rodriguez-Galindo C. Pharmacological management of Ewing sarcoma family of tumours. Expert Opin. Pharmacother. 5(6), 1257–1270 (2004).
  • Rodriguez-Galindo C, Poquette CA, Marina NM et al. Hematologic abnormalities and acute myeloid leukemia in children and adolescents administered intensified chemotherapy for the Ewing sarcoma family of tumors. J. Pediatr. Hematol. Oncol. 22(4), 321–329 (2000).
  • Kushner BH, Heller G, Cheung NK et al. High risk of leukemia after short-term dose intensive chemotherapy in young patients with solid tumors. J. Clin. Oncol. 16, 3016–3022 (1998).
  • Miser JS, Krailo M, Meyers P et al. Metastatic Ewing’s sarcoma (ES) and peripheral neuroectodermal tumor (PNET) of bone: failure of new regimens to improve outcome. Proc. Am. Soc. Clin. Oncol. 15, 467 (1996) (Abstract 1472).
  • Picci P, Bohling T, Bacci G et al. Chemotherapy-induced tumor necrosis as a prognostic factor in localized Ewing’s sarcoma of the extremities. J. Clin. Oncol. 15(4), 1553–1559 (1997).
  • Wunder JS, Paulian G, Huvos AG, Heller G, Meyers PA, Healey JH. The histological response to chemotherapy as a predictor of the oncological outcome of operative treatment of Ewing sarcoma. J. Bone Joint Surg. Am. 80(7), 1020–1033 (1998).
  • Donaldson SS, Torrey M, Link MP et al. A multidisciplinary study investigating radiotherapy in Ewing’s sarcoma: end results of POG 8346. Pediatric Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 42(1), 125–135 (1998).
  • Schuck A, Ahrens S, Paulussen M et al. Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. Int. J. Radiat. Oncol. Biol. Phys. 55(1), 168–177 (2003).
  • Elomaa I, Blomqvist CP, Saeter G et al. Five-year results in Ewing’s sarcoma. The Scandinavian Sarcoma Group experience with the SSG IX protocol. Eur. J. Cancer 36(7), 875–880 (2000).
  • Donaldson SS. Ewing sarcoma: radiation dose and target volume. Pediatr. Blood Cancer 42(5), 471–476 (2004).
  • Dunst J, Jurgens H, Sauer R et al. Radiation therapy in Ewing’s sarcoma: an update of the CESS 86 trial. Int. J. Radiat. Oncol. Biol. Phys. 32(4), 919–930 (1995).
  • Marcus RB Jr, Cantor A, Heare TC, Graham-Pole J, Mendenhall NP, Million RR. Local control and function after twice-a-day radiotherapy for Ewing’s sarcoma of bone. Int. J. Radiat. Oncol. Biol. Phys. 21(6), 1509–1515 (1991).
  • Krasin MJ, Rodriguez-Galindo C, Billups CA et al. Definitive irradiation in multidisciplinary management of localized Ewing sarcoma family of tumors in pediatric patients: outcome and prognostic factors. Int. J. Radiat. Oncol. Biol. Phys. 60(3), 830–838 (2004).
  • Bolek TW, Marcus RB Jr, Mendenhall NP, Scarborough MT, Graham-Pole J. Local control and functional results after twice-daily radiotherapy for Ewing’s sarcoma of the extremities. Int. J. Radiat. Oncol. Biol. Phys. 35(4), 687–692 (1996).
  • Schuck A, Rube C, Konemann S et al. Postoperative radiotherapy in the treatment of Ewing tumors: influence of the interval between surgery and radiotherapy. Strahlenther. Onkol. 178(1), 25–31 (2002).
  • Dunst J, Schuck A. Role of radiotherapy in Ewing tumors. Pediatr. Blood Cancer 42(5), 465–470 (2004).
  • Craft AW, Cotterill SJ, Bullimore JA, Pearson D. Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur. J. Cancer 33(7), 1061–1069 (1997).
  • Shankar AG, Pinkerton CR, Atra A et al. Local therapy and other factors influencing site of relapse in patients with localised Ewing’s sarcoma. United Kingdom Children’s Cancer Study Group (UKCCSG). Eur. J. Cancer 35(12), 1698–1704 (1999).
  • Dunst J, Paulussen M, Jurgens H. Lung irradiation for Ewing’s sarcoma with pulmonary metastases at diagnosis: results of the CESS-studies. Strahlenther. Onkol. 169(10), 621–623 (1993).
  • Paulussen M, Ahrens S, Burdach S et al. Primary metastatic (Stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Ann. Oncol. 9(3), 275–281 (1998).
  • Fagnou C, Michon J, Peter M et al. Presence of tumor cells in bone marrow but not in blood is associated with adverse prognosis in patients with Ewing’s tumor. Societe Francaise d’Oncologie Pediatrique. J. Clin. Oncol. 16(5), 1707–1711 (1998).
  • Burdach S, van Kaick B, Laws HJ et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann. Oncol. 11(11), 1451–1462 (2000).
  • Smith LM, Cox RS, Donaldson SS. Second cancers in long-term survivors of Ewing’s sarcoma. Clin. Orthop. 274, 275–281 (1992).
  • Tucker MA, D’Angio GJ, Boice JD Jr et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N. Engl. J. Med. 317(10), 588–593 (1987).
  • Fuchs B, Valenzuela RG, Petersen IA, Arndt CA, Sim FH. Ewing’s sarcoma and the development of secondary malignancies. Clin. Orthop. 415, 82–89 (2003).
  • Kuttesch JF Jr, Wexler LH, Marcus RB et al. Second malignancies after Ewing’s sarcoma: radiation dose-dependency of secondary sarcomas. J. Clin. Oncol. 14(10), 2818–2825 (1996).
  • Paulino AC. Late effects of radiotherapy for pediatric extremity sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 60(1), 265–274 (2004).
  • Hardes J, Gebert C, Hillmann A, Winkelmann W, Gosheger G. Rotationplasty in the surgical treatment plan of primary malignant bone tumors. Possibilities and limits. Orthopade 32(11), 965–970 (2003).
  • Kotz R. Rotationplasty. Semin. Surg. Oncol. 13(4), 34–40 (1997).
  • Hillmann A, Gosheger G, Hoffmann C, Ozaki T, Winkelmann W. Rotationplasty – surgical treatment modality after failed limb salvage procedure. Arch. Orthop. Trauma Surg. 120(10), 555–558 (2000).
  • Hillmann A, Hoffmann C, Gosheger G, Krakau H, Winkelmann W. Malignant tumor of the distal part of the femur or the proximal part of the tibia: endoprosthetic replacement or rotationplasty. Functional outcome and quality-of-life measurements. J. Bone Joint Surg. Am. 81(4), 462–468 (1999).
  • El-Gammal TA, El-Sayed A, Kotb MM. Reconstruction of lower limb bone defects after sarcoma resection in children and adolescents using free vascularized fibular transfer. J. Pediatr. Orthop. B 12(4), 233–243 (2003).
  • Bach AD, Kopp J, Stark GB, Horch RE. The versatility of the free osteocutaneous fibula flap in the reconstruction of extremities after sarcoma resection. World J. Surg. Oncol. 2(1), 22 (2004).
  • El-Gammal TA, El-Sayed A, Kotb MM. Microsurgical reconstruction of lower limb bone defects following tumor resection using vascularized fibula osteoseptocutaneous flap. Microsurgery 22(5), 193–198 (2002).
  • Zaretski A, Amir A, Meller I et al. Free fibula long bone reconstruction in orthopedic oncology: a surgical algorithm for reconstructive options. Plast. Reconstr. Surg. 113(7), 1989–2000 (2004).
  • Sekiguchi J, Kobayashi S, Ohmori K. Use of osteocutaneous free scapular flap on the lower extremities. Plast. Reconstr. Surg. 91(1), 103–112 (1993).
  • Winkelmann WW. Clavicula pro humero – a new surgical method for malignant tumors of the proximal humerus. Z. Orthop. Ihre Grenzgeb. 130(3), 197–201 (1992).
  • Rodl RW, Gosheger G, Gebert C, Lindner N, Ozaki T, Winkelmann W. Reconstruction of the proximal humerus after wide resection of tumours. J. Bone Joint Surg. Br. 84(7), 1004–1008 (2002).
  • Muscolo DL, Ayerza MA, Aponte-Tinao LA. Survivorship and radiographic analysis of knee osteoarticular allografts. Clin. Orthop. 373, 73–79 (2000).
  • Brigman BE, Hornicek FJ, Gebhardt MC, Mankin HJ. Allografts about the knee in young patients with high-grade sarcoma. Clin. Orthop. 421, 232–239 (2004).
  • Hornicek FJ, Gebhardt MC, Tomford WW et al. Factors affecting nonunion of the allograft-host junction. Clin. Orthop. 382, 87–98 (2001).
  • Zehr RJ, Enneking WF, Scarborough MT. Allograft-prosthesis composite versus megaprosthesis in proximal femoral reconstruction. Clin. Orthop. 322, 207–223 (1996).
  • Gonzalez-Herranz P, Burgos-Flores J, Ocete-Guzman JG, Lopez-Mondejar JA, Amaya S. The management of limb-length discrepancies in children after treatment of osteosarcoma and Ewing’s sarcoma. J. Pediatr. Orthop. 15(5), 561–565 (1995).
  • Eckardt JJ, Kabo JM, Kelley CM et al. Expandable endoprosthesis reconstruction in skeletally immature patients with tumors. Clin. Orthop. 373, 51–61 (2000).
  • Eckardt JJ, Safran MR, Eilber FR, Rosen G, Kabo JM. Expandable endoprosthetic reconstruction of the skeletally immature after malignant bone tumor resection. Clin. Orthop. 297, 188–202 (1993).
  • Neel MD, Letson GD. Modular endoprostheses for children with malignant bone tumors. Cancer Control 8(4), 344–348 (2001).
  • Tillman RM, Grimer RJ, Carter SR, Cool WP, Sneath RS. Growing endoprostheses for primary malignant bone tumors. Semin. Surg. Oncol. 13(1), 41–48 (1997).
  • Neel MD, Wilkins RM, Rao BN, Kelly CM. Early multicenter experience with a noninvasive expandable prosthesis. Clin. Orthop. Relat. Res. 415, 72–81 (2003).
  • Sluga M, Windhager R, Lang S et al. The role of surgery and resection margins in the treatment of Ewing’s sarcoma. Clin. Orthop. 392, 394–399 (2001).
  • Bacci G, Ferrari S, Longhi A et al. Role of surgery in local treatment of Ewing’s sarcoma of the extremities in patients undergoing adjuvant and neoadjuvant chemotherapy. Oncol. Rep. 11(1), 111–120 (2004).
  • Wilkins RM, Pritchard DJ, Burgert EO Jr, Unni KK. Ewing’s sarcoma of bone. Experience with 140 patients. Cancer 58(11), 2551–2555 (1986).
  • Sailer SL, Harmon DC, Mankin HJ, Truman JT, Suit HD. Ewing’s sarcoma: surgical resection as a prognostic factor. Int. J. Radiat. Oncol. Biol. Phys. 15(1), 43–52 (1988).
  • Bacci G, Ferrari S, Longhi A et al. Local and systemic control in Ewing’s sarcoma of the femur treated with chemotherapy, and locally by radiotherapy and/or surgery. J. Bone Joint Surg. Br. 85(1), 107–114 (2003).
  • Renard AJ, Veth RP, Schreuder HW, van Loon CJ, Koops HS, van Horn JR. Function and complications after ablative and limb-salvage therapy in lower extremity sarcoma of bone. J. Surg. Oncol. 73(4), 198–205 (2000).
  • Sucato DJ, Rougraff B, McGrath BE et al. Ewing’s sarcoma of the pelvis. Long-term survival and functional outcome. Clin. Orthop. 373, 193–201 (2000).
  • Rodl RW, Hoffmann C, Gosheger G, Leidinger B, Jurgens H, Winkelmann W. Ewing’s sarcoma of the pelvis: combined surgery and radiotherapy treatment. J. Surg. Oncol. 83(3), 154–160 (2003).
  • Burgers JM, Oldenburger F, de Kraker J et al. Ewing’s sarcoma of the pelvis: changes over 25 years in treatment and results. Eur. J. Cancer 33(14), 2360–2367 (1997).
  • Sharafuddin MJ, Haddad FS, Hitchon PW, Haddad SF, el-Khoury GY. Treatment options in primary Ewing’s sarcoma of the spine: report of seven cases and review of the literature. Neurosurgery 30(4), 610–618 (1992).
  • Barbieri E, Chiaulon G, Bunkeila F et al. Radiotherapy in vertebral tumors. Indications and limits: a report on 28 cases of Ewing’s sarcoma of the spine. Chir. Organi. Mov. 83(1–2), 105–111 (1998).
  • Aparicio J, Munarriz B, Pastor M et al. Long-term follow-up and prognostic factors in Ewing’s sarcoma. A multivariate analysis of 116 patients from a single institution. Oncology 55(1), 20–26 (1998).
  • Bacci G, Ferrari S, Bertoni F et al. Prognostic factors in nonmetastatic Ewing’s sarcoma of bone treated with adjuvant chemotherapy: analysis of 359 patients at the Istituto Ortopedico Rizzoli. J. Clin. Oncol. 18(1), 4–11 (2000).
  • Bacci G, Forni C, Longhi A et al. Long-term outcome for patients with non-metastatic Ewing’s sarcoma treated with adjuvant and neoadjuvant chemotherapies. 402 patients treated at Rizzoli between 1972 and 1992. Eur. J. Cancer 40(1), 73–83 (2004).
  • Riley RD, Burchill SA, Abrams KR et al. A systematic review of molecular and biological markers in tumours of the Ewing’s sarcoma family. Eur. J. Cancer 39(1), 19–30 (2003).
  • Cangir A, Vietti TJ, Gehan EA et al. Ewing’s sarcoma metastatic at diagnosis. Results and comparisons of two intergroup Ewing’s sarcoma studies. Cancer 66(5), 887–893 (1990).
  • Cosetti M, Wexler LH, Calleja E et al. Irinotecan for pediatric solid tumors: the Memorial Sloan–Kettering experience. J. Pediatr. Hematol. Oncol. 24(2), 101–105 (2002).
  • Saylors RL III, Stine KC, Sullivan J et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group Phase II study. J. Clin. Oncol. 19(15), 3463–3469 (2001).
  • Bernstein M, Goorin AM, Devidas M et al. Topotecan and topotecan/cyclophosphamide window therapy in patients with Ewing sarcoma (EWS) metastatic at diagnosis: an intergroup Pediatric Oncology Group (POG) study (P-9457). Med. Pediatr. Oncol. 37, 176 (2001) (Abstract).
  • Wagner LM, Crews KR, Iacono LC et al. Phase 1 trial of temozolomide and protracted irinotecan in pediatric patients with refractory solid tumors. Clin. Cancer Res. 10, 840–848 (2004).
  • Trippett T, Furman W, Aquino V et al. Phase 1 study of DX-8951f in pediatric patients with advanced solid tumors. Proc. Am. Soc. Clin. Oncol. 20, 376 (2001) (Abstract 1500).
  • Druker BJ. Taking aim at Ewing’s sarcoma: is KIT a target and will imatinib work? J. Natl Cancer Inst. 94(22), 1660–1661 (2002).
  • Ricotti E, Fagioli F, Garelli E et al. c-kit is expressed in soft tissue sarcoma of neuroectodermic origin and its ligand prevents apoptosis of neoplastic cells. Blood 91(7), 2397–2405 (1998).
  • Hotfilder M, Lanvers C, Jurgens H, Boos J, Vormoor J. c-KIT-expressing Ewing tumour cells are insensitive to imatinib mesylate (STI571). Cancer Chemother. Pharmacol. 50(2), 167–169 (2002).
  • Scotlandi K, Manara MC, Strammiello R et al. c-kit receptor expression in Ewing’s sarcoma: lack of prognostic value but therapeutic targeting opportunities in appropriate conditions. J. Clin. Oncol. 21(10), 1952–1960 (2003).
  • Marcus RB Jr, Graham-Pole JR, Springfield DS et al. High-risk Ewing’s sarcoma: end-intensification using autologous bone marrow transplantation. Int. J. Radiat. Oncol. Biol. Phys. 15(1), 53–59 (1988).
  • Burdach S, Jurgens H, Peters C et al. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. J. Clin. Oncol. 11(8), 1482–1488 (1993).
  • Atra A, Whelan JS, Calvagna V et al. High-dose busulphan/melphalan with autologous stem cell rescue in Ewing’s sarcoma. Bone Marrow Transplant. 20(10), 843–846 (1997).
  • Hawkins D, Barnett T, Bensinger W, Gooley T, Sanders J. Busulfan, melphalan, and thiotepa with or without total marrow irradiation with hematopoietic stem cell rescue for poor-risk Ewing-Sarcoma-Family tumors. Med. Pediatr. Oncol. 34(5), 328–337 (2000).
  • Horowitz ME, Kinsella TJ, Wexler LH et al. Total-body irradiation and autologous bone marrow transplant in the treatment of high-risk Ewing’s sarcoma and rhabdomyosarcoma. J. Clin. Oncol. 11(10), 1911–1918 (1993).
  • Stewart DA, Gyonyor E, Paterson AH et al. High-dose melphalan +/- total body irradiation and autologous hematopoietic stem cell rescue for adult patients with Ewing’s sarcoma or peripheral neuroectodermal tumor. Bone Marrow Transplant. 18(2), 315–318 (1996).
  • Meyers PA, Krailo MD, Ladanyi M et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing’s sarcoma does not improve prognosis. J. Clin. Oncol. 19(11), 2812–2820 (2001).
  • Burdach S, Meyer-Bahlburg A, Laws HJ et al. High-dose therapy for patients with primary multifocal and early relapsed Ewing’s tumors: results of two consecutive regimens assessing the role of total-body irradiation. J. Clin. Oncol. 21(16), 3072–3078 (2003).
  • Kushner BH, Meyers PA. How effective is dose-intensive/myeloablative therapy against Ewing’s sarcoma/primitive neuroectodermal tumor metastatic to bone or bone marrow? The Memorial Sloan–Kettering experience and a literature review. J. Clin. Oncol. 19(3), 870–880 (2001).
  • Davies SM, DeFor TE, Weigel BJ et al. High dose busulfan-based chemotherapy with autologous stem cell transplantation (ASCT) for high risk Ewing’s sarcoma family of tumors. Proc. Am. Soc. Clin. Oncol. 20, 364 (2001) (Abstract 1451).
  • Ladenstein R, Hartmann O, Pinkerton R et al. A multivariate and matched pair analysis on high risk Ewing tumor patients treated by Megatherapy (MGT) and Stem cell reinfusion (SCR) in Europe. Proc. Am. Soc. Clin. Oncol. 15, 555 (1999) (Abstract 2144).
  • Ladenstein R, Lasset C, Pinkerton R et al. Impact of megatherapy in children with high-risk Ewing’s tumours in complete remission: a report from the EBMT Solid Tumour Registry. Bone Marrow Transplant. 15(5), 697–705 (1995).
  • Schleiermacher G, Peter M, Oberlin O et al. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J. Clin. Oncol. 21(1), 85–91 (2003).
  • Leung W, Chen AR, Klann RC et al. Frequent detection of tumor cells in hematopoietic grafts in neuroblastoma and Ewing’s sarcoma. Bone Marrow Transplant. 22(10), 971–979 (1998).
  • Meyers PA. High-dose therapy with autologous stem cell rescue for pediatric sarcomas. Curr. Opin. Oncol. 16(2), 120–125 (2004).
  • Kalambakas SA, Moore TB, Feig SA. Megatherapy and stem cell transplantation for Ewing’s family of tumors: a critical review of current literature. Pediatr. Transplant. 8(Suppl. 5), 83–88 (2004).
  • Aryee DN, Sommergruber W, Muehlbacher K, Dockhorn-Dworniczak B, Zoubek A, Kovar H. Variability in gene expression patterns of Ewing tumor cell lines differing in EWS-FLI1 fusion type. Lab. Invest. 80(12), 1833–1844 (2000).
  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J. Clin. Invest. 99(2), 239–247 (1997).
  • Lambert G, Bertrand JR, Fattal E et al. EWS FLI-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice. Biochem. Biophys. Res. Commun. 279(2), 401–406 (2000).
  • Nitsch R, Bechmann I, Deisz RA et al. Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356(9232), 827–828 (2000).
  • Jo M, Kim TH, Seol DW et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nature Med. 6(5), 564–567 (2000).
  • Walczak H, Miller RE, Ariail K et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nature Med. 5(2), 157–163 (1999).
  • Mitsiades N, Poulaki V, Mitsiades C, Tsokos M. Ewing’s sarcoma family tumors are sensitive to tumor necrosis factor-related apoptosis-inducing ligand and express death receptor 4 and death receptor 5. Cancer Res. 61(6), 2704–2712 (2001).
  • Jaboin J, Wild J, Hamidi H et al. MS-27–275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 62(21), 6108–6115 (2002).
  • Im YH, Kim HT, Lee C et al. EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor β type II receptor gene. Cancer Res. 60(6), 1536–1540 (2000).
  • Hahm KB, Cho K, Lee C et al. Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein. Nature Genet. 23(2), 222–227 (1999).
  • Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19(56), 6680–6686 (2000).
  • Mateo-Lozano S, Tirado OM, Notario V. Rapamycin induces the fusion-type independent downregulation of the EWS/FLI-1 proteins and inhibits Ewing’s sarcoma cell proliferation. Oncogene 22(58), 9282–9287 (2003).
  • Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20(41), 5865–5877 (2001).
  • Mackall C, Berzofsky J, Helman LJ. Targeting tumor specific translocations in sarcomas in pediatric patients for immunotherapy. Clin. Orthop. 373, 25–31 (2000).
  • Staege MS, Hansen G, Baersch G, Burdach S. Functional and molecular characterization of interleukin-2 transgenic Ewing tumor cells for in vivo immunotherapy. Pediatr. Blood Cancer 43(1), 23–34 (2004).
  • Dagher R, Long LM, Read EJ et al. Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med. Pediatr. Oncol. 38(3), 158–164 (2002).
  • Merino ME, Navid F, Christensen BL et al. Immunomagnetic purging of Ewing’s sarcoma from blood and bone marrow: quantitation by real-time polymerase chain reaction. J. Clin. Oncol. 19(16), 3649–3659 (2001).
  • Prieur A, Tirode F, Cohen P, Delattre O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol. Cell Biol. 24(16), 7275–7283 (2004).
  • Toretsky JA, Steinberg SM, Thakar M et al. Insulin-like growth factor type 1 (IGF-1) and IGF binding protein-3 in patients with Ewing sarcoma family of tumors. Cancer 92(11), 2941–2947 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.