40
Views
3
CrossRef citations to date
0
Altmetric
Review

Multiple myeloma: an update of developments in targeted therapy

Pages 379-389 | Published online: 10 Jan 2014

References

  • Bartl R, Frisch B, Fateh-Moghadam A et al. Histologic classification and staging of multiple myeloma. A retrospective and prospective study of 674 cases. Am. J. Clin. Pathol. 87, 342–355 (1987).
  • Jemal A, Murray T, Samuels A et al. Cancer statistics, 2003. CA Cancer J. Clin. 53, 5–26 (2003).
  • Phekoo KJ, Schey SA, Richards MA et al. A population study to define the incidence and survival of multiple myeloma in a National Health Service Region in UK. Br. J. Haematol. 127, 299–304 (2004).
  • Hussein MA. Thalidomide, age, and future use in multiple myeloma. Blood 102, 2-b (2003).
  • Hideshima T, Chauhan D, Shima Y et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96, 2943–2950 (2000).
  • Davies FE, Raje N, Hideshima T et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).
  • Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91, 3–21 (1998).
  • Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood 104, 607–618 (2004).
  • Drach J, Kaufmann H, Urbauer E et al. The biology of multiple myeloma. J. Cancer Res. Clin. Oncol. 126, 441–447 (2000).
  • Tricot G. New insights into role of microenvironment in multiple myeloma. Lancet 355, 248–250 (2000).
  • Sanz-Rodriguez F, Hidalgo A, Teixido J. Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97, 346–351 (2001).
  • Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).
  • Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87, 1104–1112 (1996).
  • Hideshima T, Chauhan D, Richardson P et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16639–16647 (2002).
  • Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Ann. Rev. Immunol. 18, 621–663 (2000).
  • Gilmore TD, Koedood M, Piffat KA, White DW. Rel/NF-κB/IκB proteins and cancer. Oncogene 13, 1367–1378 (1996).
  • Karin M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).
  • Mitsiades N, Mitsiades CS, Poulaki V et al. Biologic sequelae of nuclear factor-κB blockade in multiple myeloma: therapeutic applications. Blood 99, 4079–4086 (2002).
  • Almond JB, Cohen GM. The proteasome: a novel target for cancer chemotherapy. Leukemia 16, 433–443 (2002).
  • Karin M, Delhase M. The IκB kinase (IKK) and NF-κB: key elements of pro-inflammatory signalling. Semin. Immunol. 12, 85–98 (2000).
  • Chauhan D, Uchiyama H, Akbarali Y et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-κB. Blood 87, 1104–1112 (1996).
  • Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via β1 integrins regulates p27Kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19, 4319–4327 (2000).
  • Witzig TE. The role of adhesion receptors in the pathogenesis of multiple myeloma. Hematol. Oncol. Clin. North Am. 13, 1127–1143 (1999).
  • Tu Y, Renner S, Xu F et al. Bcl-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res. 58, 256–262 (1998).
  • Rajkumar SV, Hayman S, Gertz MA et al. Combination therapy with thalidomide plus dexamethasone for newly diagnosed myeloma. J. Clin. Oncol. 20, 4319–4323 (2002).
  • Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J. Clin. Oncol. 21, 16–19 (2003).
  • Singhal S, Mehta J, Desikan R et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).
  • Rajkumar SV, Blood E, Vesole DH. A randomised phase III trial of thalidomide plus dexamethasone versus dexamethasone in newly diagnosed multiple myeloma (E1A00): a trial coordinated by the Eastern Cooperative Oncology Group 23:558. J. Clin. Oncol. 23, 558 (2004).
  • Srkalovic G, Cameron MG, Rybicki L et al. Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease. Cancer 101, 558–566 (2004).
  • Agrawal NR, Hussein MA, Elson P, Karam MA, Reed J, Srkalovic G. Pegylated doxorubicin (D), vincristine(V), reduced frequency dexamethasone(D) and thalidomide(T) (DVd-T) in newly diagnosed (Nmm) and relapsed/refractory (Rmm) multiple myeloma patients. Blood 102(11) (2003) (Abstract 237).
  • Zangari M, Barlogie B, Anaissie E et al. Deep vein thrombosis in patients with multiple myeloma treated with thalidomide and chemotherapy: effects of prophylactic and therapeutic anticoagulation. Br. J. Haematol. 126, 715–721 (2004).
  • Bensinger WI, Rowley SD, Demirer T et al. High-dose therapy followed by autologous hematopoietic stem-cell infusion for patients with multiple myeloma. J. Clin. Oncol. 14, 1447–1456 (1996).
  • Marit G, Faberes C, Pico JL et al. Autologous peripheral-blood progenitor-cell support following high-dose chemotherapy or chemoradiotherapy in patients with high-risk multiple myeloma. J. Clin. Oncol. 14, 1306–1313 (1996).
  • Attal M, Harousseau JL, Stoppa AM et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N. Engl. J. Med. 335, 91 (1996).
  • Powles R, Raje N, Milan S et al. Outcome assessment of a population-based group of 195 unselected myeloma patients under 70 years of age offered intensive treatment. Bone Marrow Transplant. 20, 435–443 (1997).
  • Alegre A, Diaz-Mediavilla J, San Miguel J et al. Autologous peripheral blood stem cell transplantation for multiple myeloma: a report of 259 cases from the Spanish Registry. Spanish Registry for Transplant in MM (Grupo Espanol de Trasplante Hematopoyetico-GETH) and PETHEMA. Bone Marrow Transplant. 21, 133–140 (1998).
  • Barlogie B, Jagannath S, Desikan KR et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 93, 55–65 (1999).
  • Segeren CM, Sonneveld P, van der Holt B et al. Overall and event-free survival are not improved by the use of myeloablative therapy following intensified chemotherapy in previously untreated patients with multiple myeloma: a prospective randomized Phase 3 study. Blood 101, 2144–2151 (2003).
  • Child JA, Morgan GJ, Davies FE et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Engl. J. Med. 348, 1875–1883 (2003).
  • Browman GP, Bergsagel D, Sicheri D et al. Randomized trial of interferon maintenance in multiple myeloma: a study of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 13, 2354–2360 (1995).
  • Durie BGM, Jacobson J, Barlogie B, Crowley J. Magnitude of response with myeloma frontline therapy does not predict outcome: importance of time to progression in Southwest Oncology Group Chemotherapy trials. J. Clin. Oncol.22(10), 1857–1863 (2004).
  • Riccardi A, Mora O, Tinelli C et al. Response to first-line chemotherapy and long-term survival in patients with multiple myeloma: results of the MM87 prospective randomised protocol. Eur. J. Cancer 39, 31–37 (2003).
  • Blade J, Vesole DH, Gertz M. Transplantation for multiple myeloma: who, when, how often? Blood 102, 3469–3477 (2003).
  • Hussein M. Role of high-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. Leukemia 18(4), 893 (2004).
  • Cunningham D, Powles R, Malpas J et al. A randomized trial of maintenance interferon following high-dose chemotherapy in multiple myeloma: long-term follow-up results. Br. J. Haematol. 102, 495–502 (1998).
  • Alexanian R, Dimopoulos MA, Hester J, Delasalle K, Champlin R. Early myeloablative therapy for multiple myeloma. Blood 84, 4278–4282 (1994).
  • Blade J, San Miguel JF, Fontanillas M et al. Survival of multiple myeloma patients who are potential candidates for early high-dose therapy intensification/autotransplantation and who were conventionally treated. J. Clin. Oncol. 14, 2167–2173 (1996).
  • Blade J, Esteve J, Rives S et al. High-dose therapy autotransplantation/intensification vs. continued standard chemotherapy in multiple myeloma in first remission. Results of a non-randomized study from a single institution. Bone Marrow Transplant. 26, 845–849 (2000).
  • Barlogie B, Kyle R, Anderson K et al. Comparable survival in multiple myeloma (MM) with high dose therapy (HDT) employing MEL 140 mg/m2 + TBI 12 Gy autotransplants versus standard dose therapy with VBMCP and no benefit from interferon (IFN) maintenance. Blood 102, 42 (2003) (Abstract 135).
  • Attal M, Harousseau J-L, Leyvraz S et al. Maintenance treatment with thalidomide after autologous transplantation for myeloma: first analysis of a prospective randomized study of the Intergroupe Francophone du Myelome (IFM 99 02). Blood 104(11),155a (2004) (Abstract 535).
  • Facon T, Mary JY, Hulin C et al. Randomized clinical trial comparing melphalan–prednisone (MP), MP–thalidomide (MP–Thal) and high-dose therapy using melphalan 100 MG/M² (MEL100) for newly diagnosed myeloma patients aged 65–75 years. Interim Analysis of the IFM 99–06 trial on 350 patients. Blood 104(11), (2004).
  • Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N. Engl. J. Med. 310, 1353–1356 (1984).
  • Hussein MA, Wood L, Hsi E et al. A Phase II trial of pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone combination therapy in newly diagnosed multiple myeloma patients. Cancer 95, 2160–2168 (2002).
  • Rifkin RM, Hussein MA, Gregory SA, Mohrbacher A. Updated results from a randomized multicenter trial of DVd vs. VAd in patients with newly diagnosed multiple myeloma. J. Clin. Oncol. 22, 560S (2004) (Abstract 6509).
  • Agrawal NR, Hussein MA, Elson P et al. Pegylated doxorubicin (D), vincristine (V), reduced freuency dexamethasone (D) and thalidomide (T) (DVd-T) in newly diagnosed (Nmm) and relapsed/refractory (Rmm) multiple myeloma patients. Blood 102, 237a (2003).
  • Muller GW, Chen R, Huang SY et al. Amino-substituted thalidomide analogs: potent inhibitors of TNF-α production. Bioorg. Med. Chem. Lett. 9, 1625–1630 (1999).
  • Richardson PG, Schlossman RL, Weller E et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well-tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067 (2002).
  • Dredge K, Marriott JB, Macdonald CD et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer 87, 1166–1172 (2002).
  • Dredge K, Marriott JB, Todryk SM et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J. Immunol. 168, 4914–4919 (2002).
  • Schey SA, Fields P, Bartlett JB et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J. Clin. Oncol. 22, 3269–3276 (2004).
  • Richardson PG, Barlogie B, Berenson J et al. A Phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).
  • Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999).
  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).
  • Palombella VJ, Conner EM, Fuseler JW et al. Role of the proteasome and NF-κB in streptococcal cell wall-induced polyarthritis. Proc. Natl Acad. Sci. USA 95, 15671–15676 (1998).
  • Orlowski RZ, Stinchcombe TE, Mitchell BS et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J. Clin. Oncol. 20, 4420–4427 (2002).
  • Richardson P, Sonneveld P, Schuster MW et al. Bortezomib vs. dexamethasone in relapsed multiple myeloma: a Phase 3 randomized study. J. Clin. Oncol. 22(14S), (2004) (Abstract 6511).
  • Soignet SL, Frankel SR, Douer D et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J. Clin. Oncol. 19, 3852–3860 (2001).
  • Roboz GJ, Dias S, Lam G et al. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96, 1525–1530 (2000).
  • Rousselot P, Labaume S, Marolleau JP et al. Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. Cancer Res. 59, 1041–1048 (1999).
  • Deaglio S, Canella D, Baj G et al. Evidence of an immunologic mechanism behind the therapeutical effects of arsenic trioxide (As2O3) on myeloma cells. Leuk. Res. 25, 227–235 (2001).
  • Munshi NC, Tricot G, Desikan R et al. Clinical activity of arsenic trioxide for the treatment of multiple myeloma. Leukemia 16, 1835–1837 (2002).
  • Hussein MA, Saleh M, Ravandi F, Mason J, Rifkin RM, Ellison R. Phase 2 study of arsenic trioxide in patients with relapsed or refractory multiple myeloma. Br. J. Haematol.125(4), 470–476 (2004).
  • Grad JM, Bahlis NJ, Reis I et al. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98, 805–813 (2001).
  • Bahlis NJ, McCafferty-Grad J, Jordan-McMurry I et al. Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated depletion of intracellular glutathione for the treatment of relapsed/refractory multiple myeloma. Clin. Cancer Res. 8, 3658–3668 (2002).
  • Hayashi T, Hideshima T, Akiyama M et al. Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol. Cancer Ther. 1, 851–860 (2002).
  • Gruss HJ, Herrmann F, Gattei V et al. CD40/CD40 ligand interactions in normal, reactive and malignant lympho-hematopoietic tissues. Leuk. Lymphoma 24, 393–422 (1997).
  • Van KC, Banchereau J. Functions of CD40 on B-cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 (1997).
  • Tong AW, Stone MJ. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 10, 1–13 (2003).
  • Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Ann. Rev. Immunol. 16, 111–135 (1998).
  • Podar K, Tai YT, Davies FE et al. Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98, 428–435 (2001).
  • Lin B, Podar K, Gupta D et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584 inhibits growth and migration of multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 62, 5019–5026 (2002).
  • Drummond DC, Noble CO, Kirpotin DB et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Ann. Rev. Pharmacol. Toxicol. (2004) (In Press).
  • Mei S, Ho AD, Mahlknecht U. Role of histone deacetylase inhibitors in the treatment of cancer. Int. J. Oncol. 25, 1509–1519 (2004).
  • Piekarz R, Bates S. A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr. Pharm. Des. 10, 2289–2298 (2004).
  • Alexanian R, Weber D, Anagnostopoulos A et al. Thalidomide with or without dexamethasone for refractory or relapsing multiple myeloma. Semin. Hematol. 40, 3–7 (2003).
  • Berenson JR, Crowley JJ, Grogan TM et al. Maintenance therapy with alternate-day prednisone improves survival in multiple myeloma patients. Blood 99, 3163–3168 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.