225
Views
24
CrossRef citations to date
0
Altmetric
Review

Autologous hematopoietic stem cell transplantation for pediatric solid tumors

Pages 835-846 | Published online: 10 Jan 2014

References

  • Robison LL. General principles of the epidemiology of childhood cancer. In: Principles and Practice of Pediatric Oncology. Third Edition. Pizzo PA, Poplack DG (Eds). Lippincott-Raven Publishers, PA, USA, 1–10 (1997).
  • Hawkins D, Barnett T, Bensinger W, Gooley T, Sanders J. Busulfan, melphalan, and thiotepa with or without total marrow irradiation with hematopoietic stem cell rescue for poor-risk Ewing-Sarcoma-Family tumors. Med. Pediatr. Oncol. 34(5), 328–337 (2000).
  • Perentesis J, Katsanis E, DeFor T, Neglia J, Ramsay N. Autologous stem cell transplantation for high-risk pediatric solid tumors. Bone Marrow Transplant. 24(6), 609–615 (1999).
  • Matthay KK, Villablanca JG, Seeger RC et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med. 14(16), 1165–1173 (1999).
  • Boulad F, Kernan NA, LaQuaglia MP et al. High-dose induction chemoradiotherapy followed by autologous bone marrow transplantation as consolidation therapy in rhabdomyosarcoma, extraosseous Ewing’s sarcoma, and undifferentiated sarcoma. J. Clin. Oncol. 16(5), 1697–1706 (1998).
  • Fagioli F, Biasin E, Mastrodicasa L et al. High-dose thiotepa and etoposide in children with poor-prognosis brain tumors. Cancer 100(10), 2215–2221 (2004).
  • Sandlund JT, Bowman L, Heslop HE et al. Intensive chemotherapy with hematopoietic stem-cell support for children with recurrent or refractory NHL. Cytotherapy 4(3), 253–258 (2002).
  • Burdach S, Meyer-Bahlburg A, Laws HJ, Haase R, van Kaik B, Metzner BJ. High-dose therapy for patients with primary multifocal and early relapsed Ewing’s tumors: results of two consecutive regimens assessing the role of total-body irradiation. J. Clin. Oncol. 21(16), 3072–3078 (2003).
  • Kanold J, Yakouben K, Tchirkov A et al. Long-term results of CD34(+) cell transplantation in children with neuroblastoma. Med. Pediatr. Oncol. 35(1), 1–7 (2000).
  • Kasper B, Lehnert T, Bernd L et al. High-dose chemotherapy with autologous peripheral blood stem cell transplantation for bone and soft-tissue sarcomas. Bone Marrow Transplant. 34, 37–41 (2004).
  • Frei E III, Teicher BA, Holden SA, Cathcart KN, Wang YY. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Res. 48(22), 6417–6423 (1988).
  • Frei EJ, Canellos GP. Dose: a critical factor in cancer chemotherapy. Am. J. Med. 69, 585–594 (1980).
  • Frei E III, Antman K, Teicher B, Eder P, Schnipper L. Bone marrow autotransplantation for solid tumors-prospects. J. Clin. Oncol. 7(4), 515–526 (1989).
  • Phillips GL. What is the best strategy for autologous hematopoietic stem cell transplantation in cancer? In: High-dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Third Edition. Armitage JO, Antman KH (Eds). Lippincott Publishing, PA, USA, 69–75 (2000).
  • Matthay KK. Hematopoietic cell transplantation for neuroblastoma. In: Thomas’ Hematopoietic Cell Transplantation. Third Edition. Blume KG, Forman SJ, Appelbaum FR (Eds). Blackwell Publishing, MA, USA, 1333–1344 (2004).
  • Seeger RC, Brodeur. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med. 313(18), 1111–1116 (1985).
  • Ladenstein R, Philip T, Lasset C et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European Bone Marrow Transplantation Solid Tumor Registry. J. Clin. Oncol. 16(3), 953–965 (1998).
  • Pinkerton CR. ENSG 1-randomised study of high-dose melphalan in neuroblastoma. Bone Marrow Transplant. 3(Suppl.), 112–113 (1991).
  • Lanino E, Boni L, Corciulo P, De Bernardi B. Did BMT change the course of neuroblastoma? Bone Marrow Transplant. 3(Suppl.), 114–117 (1991).
  • Shuster JJ, Canto AB, McWilliams N et al. The prognostic significance of autologous bone marrow transplant in advanced neuroblastoma. J. Clin. Oncol. 10, 1045–1049 (1991).
  • Ohnuma N, Takahashi H, Kaneko M et al. Treatment combined with bone marrow transplantation for advance neuroblastoma: an analysis of patients were pretreated intensively with the protocol of the Study Group of Japan. Med. Pediatr. Oncol. 24, 181–187 (1995).
  • Stram DO, Matthay KK, O’Leary M et al. Consolidation chemoradiotherapy and autologous bone marrow transplantation versus continued chemotherapy for metastatic neuroblastoma: a report of two concurrent Children’s Cancer Group studies. J. Clin. Oncol. 14, 2417–2426 (1996).
  • Verdeguer A, Munoz A, Canete A et al. Long-term results of high-dose chemotherapy and autologous stem cell rescue for high-risk neuroblastoma patients: a report of the Spanish working party for BMT in children (Getmon). Pediatr. Hematol. Oncol. 321(6), 495–504 (2004).
  • Hartmann O, Valteau-Couanet D, Vassal G, Lapierre V, Brugieres L, Delgado R. Prognostic factors in metastatic neuroblastoma in patients over 1 year of age treated with high-dose chemotherapy and stem cell transplantation: a multivariate analysis in 218 patients treated in a single institution. Bone Marrow Transplant. 23(8), 789–795 (1999).
  • Kletzel M, Abella EM, Sandler ES et al. Thiotepa and cyclophosphamide with stem cell rescue for consolidation therapy for children with high-risk neuroblastoma: a Phase I/II study of the Pediatric Blood and Marrow Transplant Consortium. J. Pediatr. Hematol. Oncol. 20, 49–54 (1998).
  • Hoffmann C, Ahrens S, Dunst J et al. Pelvic Ewing sarcoma: a retrospective analysis of 241 cases. Cancer 85(4), 869–877 (1999).
  • Grier HE, Krailo MD, Tarbell NJ et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N. Engl. J. Med. 348(8), 694–701 (2003).
  • Kinsella TJ, Miser JS, Waller B, Venzon D, Glatstein E, Weaver-McClure L. Long-term follow-up of Ewing’s sarcoma of bone treated with combined modality therapy. Int. J. Radiat. Oncol. Biol. Phys. 20(3), 389–395 (1991).
  • Cotterill SJ, Ahrens S, Paulussen M et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Co-operative Ewing’s Sarcoma Study Group. J. Clin. Oncol. 18(17), 3108–3114 (2000).
  • Ladenstein R, Hartmann O, Pinkerton R et al. The impact of megatherapy (MGT) followed by stem cell reinfusion (SCR) in Ewing tumor (ET) patients with residual disease. Bone Marrow Transplant.19, S86 (1997).
  • Ladenstein R, Lasset C, Pinkerton R et al. Impact of megatherapy in children with high-risk Ewing’s tumours in complete remission: a report from the EBMT Solid Tumour Registry. Bone Marrow Transplant. 15(5), 697–705 (1995).
  • Marcus RB Jr, Berrey BH, Graham-Pole J, Mendenhall NP, Scarborough MT. The treatment of Ewing’s sarcoma of the bone at the University of Florida, 1969–1998. Clin. Orthop. 397, 290–297 (2002).
  • Burdach S, Jürgens, H, Peters C et al. Myeloablative radiotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. J. Clin. Oncol. 11, 1482–1488 (1993).
  • Hartmann O, Oberlin O, Beaujean F et al. Role of high-dose Chemotherapy followed by bone marrow autograft in the treatment of metastatic Ewing’s sarcoma in children. Bull. Cancer 77, 181–187 (1990).
  • Horowitz ME, Kinsella TJ, Wexler LH et al. Total-body irradiation and autologous bone marrow transplant in the treatment of high-risk Ewing’s sarcoma and rhabdomyosarcoma. J. Clin. Oncol. 10, 1911–1918 (1993).
  • Houghton JA, Cook RL, Lutz PJ, Houghton PJ. Melphalan: a potential new agent in the treatment of childhood rhabdomyosarcoma. Cancer Treat. Rep. 59, 91–96 (1985).
  • Pritchard J, Cotterill SJ, Germond SM, Imeson J, de Kraker J, Jones DR. High dose melphalan in the treatment of advanced neuroblastoma: results of a randomised trial (ENSG-1) by the European Neuroblastoma Study Group. Pediatr. Blood Cancer 44(4), 348–357 (2005).
  • Burdach S, van Kaick B, Laws HJ et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing’s tumors: an update after long-term follow-up from two centers of the European Intergroup study EICESS. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Ann. Oncol. 11, 1451–1462 (2000).
  • Paulussen M, Ahrens S, Burdach S et al. Primary metastatic (Stage IV) Ewing’s tumor: survivial analysis of 171 patients from the EICESS studies. European Intergroup Co-operative Ewing’s Sarcoma Studies. Ann. Oncol. 9, 275–281 (1998).
  • Meyers PA, Krailo MD, Ladanyi M et al. High-dose melphalan, etoposide, total-body irradiation, and autologous stem-cell reconstitution as consolidation therapy for high-risk Ewing’s sarcoma does not improve prognosis. J. Clin. Oncol. 19(11), 2812–2820 (2001).
  • Atra A, Whelan JS, Calvagna V et al. High-dose busulphan/melphalan with autologous stem cell rescue in Ewing’s sarcoma. Bone Marrow Transplant. 20, 843–846 (1997).
  • Valteau-Couanet D, Michon J, Plouvier E et al. Treatment of metastatic Ewing’s sarcomas (ES) with busulfan and melphalan consolidaton high dose chemotherapy (HDCT): a study of the French Society of Pediatric Oncology (SFOP). Med. Pediatr. Oncol. 24, 238 (1996).
  • Crist W, Gehan EA, Abdelsalam HR et al. The third intergroup rhabdomyosarcoma study. J. Clin. Oncol. 13, 610–630 (1995).
  • Crist WM, Garnsey L, Beltangady MS et al. Prognosis in children with rhabdomyosarcoma: a report of the intergroup rhabdomyosarcoma studies I and II. Intergroup Rhabdomyosarcoma Committee. J. Clin. Oncol. 8(3), 443–452 (1990).
  • Lafay-Cousin L, Hartmann, Plouvier P, Mechinaud F, Boutard P, Oberlin O. High-dose thiotepa and hematopoietic stem cell transplantation in pediatric malignant mesenchymal tumors: a phase II study. Bone Marrow Transplant. 26(6), 627–632 (2000).
  • Pinkerton CR. Megatherapy for soft tissue sarcomas. EBMT experience. Bone Marrow Transplant. 7(Suppl. 3), 120–122 (1991).
  • Koscielniak E, Rosti G, Hartmann O et al. High dose chemotherapy (HDC) with hematopoietic rescue (HR) in patients with rhabdomyosarcoma (RMS): an EBMT solid tumor working party survey. Bone Marrow Transplant. 19, S86 (1997).
  • Koscielniak E, Klingebiel TH, Peters C et al. Do patients with metastatic and recurrent rhabdomyosarcoma benefit from high-dose therapy with hematopoietic rescue? Report of the German/Austrian Pediatric Bone Marrow Transplantation Group. Bone Marrow Transplant. 19(3), 227–231 (1997).
  • Carli M, Colombatti R, Oberlin O et al. High-dose melphalan with autologous stem-cell rescue in metastatic rhabdomyosarcoma. J. Clin. Oncol. 9, 2796–2803 (1999).
  • Boulad F, Kernan NA, LaQuaglia MP et al. High-dose induction chemoradiotherapy followed by autologous bone marrow transplantation as consolidation therapy in rhabdomyosarcoma, extraosseous Ewing’s sarcoma, and undifferentiated sarcoma. J. Clin. Oncol. 16(5), 1697–1706 (1998).
  • Lucidarme N, Valteau-Couanet D, Oberlin O et al. Phase II study of high-dose thiotepa and hematopoietic stem cell transplantation in children with solid tumors. Bone Marrow Transplant. 22, 535–540, (1998).
  • Diaz MA, Vicent MG, Madero L. High-dose busulfan/melphalan as conditioning for autologous PBPC transplantation in pediatric patients with solid tumors. Bone Marrow Transplant. 11, 1157–1159 (1999).
  • Malogolowkin MH, Sposto R, Grovas L, Breneman J, Womer R, Ortega JA. Lack of improvement in survival of children with metastatic rhabdomyosarcoma (RMS) treated with intensive therapy followed by stem cell transplant (SCT) for control of minimal residual disease. Proc. Am. Soc. Clin. Oncol. 18, 555a (1999).
  • Blay JY, Bouhour D, Ray-Coquard I, Dumontet C, Philip T, Biron P. High-dose melphalan with autologous hematopoietic stem-cell transplantation for advanced soft tissue sarcoma in adults. J. Clin. Oncol. 18, 3643–3650 (2000).
  • Ozkaynak MF, Matthay K, Cairo M et al. Double-alkylator non-total-body irradiation regimen with autologous hematopoietic stem-cell transplantation in pediatric solid tumors. J. Clin. Oncol. 16, 937–944 (1998).
  • Meyers P, Heller G, Healey J et al. Chemotherapy for non-metastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J. Clin. Oncol. 10, 5–15 (1992).
  • Saab R, Rao BN, Rodriguez-Galindo C, Billups CA, Fortenberry TN, Daw NC. Osteosarcoma of the pelvis in children and young adults: the St. Jude Children’s Research Hospital experience. Cancer 103(7), 1468–1474 (2005).
  • Sauerbrey A, Bielack S, Kempf-Bielack B, Zoubek A, Paulussen M, Zintl F. High-dose chemotherapy (HDC) and autologous hematopoietic stem cell transplantation (ASCT) as salvage therapy for relapsed osteosarcoma. Bone Marrow Transplant. 27, 933–937 (2001).
  • Graham ML, Yeager AM, Leventhal BG et al. Treatment of recurrent and refractory pediatric solid tumors with high-dose busulfan and cyclophosphamide followed by autologous bone marrow rescue. Clin. Oncol. 10(12), 1957–1964 (1992).
  • Valteau-Couanet D, Kalifa C, Benhamou E et al. Phase II study of high-dose thiotepa (HDT) and hematopoietic stem cell transplantation (SCT) support in children with metastatic osteosarcoma. Med. Pediatr. Oncol. 24, 239a (1996).
  • Fagioli F, Aglietta M, Tienghi A et al. High-dose chemotherapy in the treatment of relapsed osteosarcoma: an Italian sarcoma group study. J. Clin. Oncol. 20(8), 2150–2156 (2002).
  • Chan KW, Petropoulos D, Choroszy M et al. High-dose sequential chemotherapy and autologous stem cell reinfusion in advanced pediatric solid tumors. Bone Marrow Transplant. 20, 1039–1043 (1997).
  • Franzius C, Bielack S, Flege S et al. High-activity samarium-153-EDTMP therapy followed by autologous peripheral blood stem cell support in unresectable osteosarcoma. Nuklearmedizin 40, 215–220 (2001).
  • Anderson PM, Wiseman GA, Dispenzieri A et al. High-dose samarium-153 ethylene diamine tetramethylene phosphonate: low toxicity of skeletal irradiation in patients with osteosarcoma and bone metastases. J. Clin. Oncol. 20(1), 189–196 (2003).
  • Green DM, Coppes MJ, Breslow NE et al. Wilms Tumor. In: Principles and Practice of Pediatric Oncology. Third Edition. Pizzo PA, Poplack DG (Eds). Lippincott-Raven Publishers, PA, USA, 733–759 (1997).
  • Grundy P, Breslow N, Green DM, Sharples K, Evans A, D’Angio GJ. Prognostic factors for children with recurrent Wilms’ tumor: results from the Second and Third National Wilms’ Tumor Study. J. Clin. Oncol. 7, 638–647 (1989).
  • Garaventa A, Hartmann O, Bernard JL et al. Autologous bone marrow transplantation for pediatric Wilms’ tumor: the experience of the European Bone Marrow Transplantation Solid Tumor Registry. Med. Pediatr. Oncol. 22(1), 11–14 (1994).
  • Warkentin PI, Brochstein JA, Strandjord SE et al. High dose therapy followed by autologous stem cell rescue for recurrent Wilms’ tumor (WT). Proc. Am. Soc. Clin. Oncol. 12, 414a (1993).
  • Pein F, Michon J, Valteau-Couanet D et al. High-dose melphalan, etoposide, and carboplatin followed by autologous stem-cell rescue in pediatric high-risk recurrent Wilms’ tumor: a French Society of Pediatric Oncology study. J. Clin. Oncol. 16(10), 3295–3301 (1998).
  • Kremens B, Gruhn B, Klingebiel T et al. High-dose chemotherapy with autologous stem cell rescue in children with nephroblastoma. Bone Marrow Transplant. 30(12), 893–898 (2002).
  • Campbell AD, Cohn SL, Reynolds M et al. Treatment of relapsed Wilms’ tumor with high-dose therapy and autologous hematopoietic stem cell rescue: the experience at Children’s Memorial Hospital. J. Clin. Oncol. 22(14), 2885–2890 (2004).
  • Donaldson SS, Egbert PR, Newsham I, Cavenee WK. Retinoblastoma. In: Principles and Practice of Pediatric Oncology. Third Edition. Pizzo PA, Poplack DG (Eds). Lippincott-Raven Publishers, PA, USA, 699–715 (1997).
  • Blach LE, McCormick B, Abramson DH, Ellsworth TM. Trilateral retinoblastoma: incidence and outcome-a decade of experience. Int. J. Radiat. Oncol. Biol. Phys. 29, 729–733 (1994).
  • Namouni F, Doz F, Tanguy ML, Quintana E, Michon J, Pacquement H. High-dose chemotherapy with carboplatin, etoposide and cyclophosphamide followed by a hematopoietic stem cell rescue in patients with high-risk retinoblastoma: a SFOP and SFGM Study. Eur. J. Cancer 33(14), 2368–2375 (1997).
  • Dunkel IJ, Aledo A, Kernan NA et al. Successful treatment of metastatic retinoblastoma. Cancer 89(10), 2117–2121 (2000).
  • Jubran RF, Erdreich-Epstein A, Butturini A, Murphree AL, Villablanca JG. Approaches to treatment for extraocular retinoblastoma: Children’s Hospital Los Angeles experience. J. Pediatr. Hematol. Oncol. 26(1), 31–34 (2004).
  • Kremens B, Wieland R, Reinhard H et al. High-dose chemotherapy with autologous stem cell rescue in children with retinoblastoma. Bone Marrow Transplant. 31(4), 281–284 (2003).
  • Matsubara H, Makimoto A, Higa T et al. A multidisciplinary treatment strategy that includes high-dose chemotherapy for metastatic retinoblastoma without CNS involvement. Bone Marrow Transplant. 35(8), 763–766 (2005).
  • Rodriquez-Galindo C, Wilson MW, Haik BG et al. Treatment of metastatic retinoblastoma. Ophthalmology 110(6), 1237–1240 (2003).
  • Beyer J, Schwella N, Zingsem J et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral blood progenitor cells or bone marrow: a randomized comparison. J. Clin. Oncol. 13, 1328–1335 (1995).
  • Leung W, Chen AR, Klann RC et al. Frequent detection of tumor cells in hematopoietic grafts in neuroblastoma and Ewing’s sarcoma. Bone Marrow Transplant. 22(10), 971–979 (1999).
  • Schleiermacher G, Peter M, Oberlin O et al. Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J. Clin. Oncol. 21(1), 85–91 (2003).
  • Tchirkov A, Kanold J, Giollant M et al. Molecular monitoring of tumor cell contamination in leukapheresis products from stage IV neuroblastoma patients before and after positive CD34 selection. Med. Pediatr. Oncol. 30(4), 228–232 (1998).
  • Rill DR, Santana VM, Roberts WM et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84(2), 380–383 (1994).
  • Reynolds CP, Seeger RC, Vo DD, Black AT, Wells J, Ugelstad J. Model system for removing neuroblastoma cells from bone marrow using monoclonal antibodies and magnetic immunobeads. Cancer Res. 46(11), 5882–5886 (1986).
  • Van Riet I, Schots R, Balduc N et al. Immunomagnetic purging of bone marrow grafts for autologous transplantation in neuroblastoma. Acta Clin. Belg. 45(2), 97–106 (1990).
  • Handgretinger R, Leung W, Ihm K, Lang P, Klingebiel T, Niethammer D. Tumour cell contamination of autologous stem cells grafts in high-risk neuroblastoma: the good news? Br. J. Cancer 88(12), 1874–1877 (2003).
  • Handgretinger R, Greil J, Schurmann U et al. Positive selection and transplantation of peripheral CD34+ progenitor cells: feasibility and purging efficacy in pediatric patients with neuroblastoma. J. Hematother. 6(3), 235–242 (1997).
  • Donovan J, Temel J, Zuckerman A et al. CD34 selelction as a stem cell purging strategy for neuroblastoma: preclinical and clinical studies. Med. Pediatr. Oncol. 35(6), 677–682 (2000).
  • Voigt A, Hafer R, Gruhn B, Zintl F. Expression of CD34 and other hematopoeitic antigens on neuroblastoma cells: consequences for autologous bone marrow and peripheral blood stem cell transplantation. Neuroimmunol. 78(1–2), 117–126 (1997).
  • Hale GA, Horwitz, E, Leung W et al. CD133+ hematopoietic cells successfully reconstitute hematopoiesis following autologous peripheral blood stem cell transplantation. Blood 104(11), 130a (2004).
  • Kletzel M, Katzenstein HM, Haut PR et al. Treatment of high-risk neuroblastoma with triple-tandem high-dose therapy and stem-cell rescue: results of the Chicago Pilot II Study. J. Clin. Oncol. 20(9), 2284–2292 (2002).
  • Grupp SA, Stern JW, Bunin N et al. Tandem high-dose therapy in rapid sequence for children with high-risk neuroblastoma. J. Clin. Oncol. 18(13), 2567–2575 (2000).
  • Strother D, Ashley D, Kellie SJ et al. Feasibility of four consecutive high-dose chemotherapy cycles with stem-cell rescue for patients with newly diagnosed medulloblastoma or supratentorial primitive neuroectodermal tumor after craniospinal radiotherapy: results of a collaborative study. J. Clin. Oncol. 19(10), 2696–2704 (2001).
  • Ozkaynak MF, Sandoval C, Levendoglu-Tugal O, Jayabose S. A pilot trial of tandem autologous peripheral blood progenitor cell transplantation following high-dose thiotepa and carboplatin in children with poor-risk central nervous system tumors. Pediatr. Hematol. Oncol. 7, 635–645 (2004).
  • Capizzi RL. Amifostine: the preclinical basis for broad spectrum selective cytoprotection of normal tissues from cytotoxic therapies. Semin. Oncol. 23(Suppl. 8), 2–17 (1996).
  • Spielberger R, Stiff P, Bensinger W et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N. Engl. J. Med. 351 (25), 2590–2598 (2004).
  • Yamayoshi T, Nagayasu T, Matsumoto K, Abo T, Hishikawa Y, Koji T. Expression of keratinocyte growth factor/fibroblast growth factor-7 and its receptor in human lung cancer: correlation with tumour proliferative activity and patient prognosis. J. Pathol. 204(1), 110–118 (2004).
  • Frost JD, Hank JA, Reaman GH et al. A Phase I/IB trial of murine monoclonal antiGD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma: a report of the Children’s Cancer Group. Cancer 80(2), 317–333 (1997).
  • Davidoff AM, Kimbrough SA, Ng CY, Shochat SJ, Vanin EF. Neuroblastoma regression and immunity induced by transgenic expression of interleukin-12. J. Pediatr. Surg. 34(5), 902–906 (1999).
  • Abdul-Hai A, Or R, Slavin S et al. Stimulation of immune reconstitution by interleukin-7 after syngeneic bone marrow transplantation in mice. Exp. Hematol. 24(12), 1416–1422 (1996).
  • Bowman LC, Grossmann M, Rill D et al. Interleukin-2 gene-modified allogeneic tumor cells for treatment of relapsed neuroblastoma. Hum. Gene Ther. 9(9), 1303–1311 (1998).
  • Bowman L, Grossmann M, Rill D et al. IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood 92(6), 1941–1949 (1998).
  • Ladenstein R, Lasset C, Hartmann O et al. Comparison of auto versus allografting as consolidation of primary treatments in advanced neuroblastoma over one year of age at diagnosis: report from the European Group for Bone Marrow Transplantation. Bone Marrow Transplant. 14(1), 37–46 (1994).
  • Matthay KK, Seeger RC, Reynolds CP et al. Allogeneic versus autologous purged bone marrow transplantation for neuroblastoma: a report from the Childrens Cancer Group. J. Clin. Oncol. 12(11), 2382–2389 (1994).
  • Inaba H, Handgretinger R, Furman W, Hale G, Leung W. Allogeneic graft-versus-hepatoblastoma effect. Pediatr. Blood Cancer (2005).
  • Koscielniak E, Gross-Wieltsch U, Treuner J et al. Graft-versus-ewing sarcoma effect and long-term remission induced by haploidentical stem-cell transplantation in a patient with relapse of metastatic disease. J. Clin. Oncol. 23(1), 242–244 (2005).
  • Takahashi Y, Childs RW. Nonmyeloablative transplantation: an allogeneic-based immunotherapy for renal cell carcinoma. Clin. Cancer Res. 10(18 Pt 2), S6353–S6359 (2004).
  • Tykodi SS, Warren EH, Thompson JA et al. Allogeneic hematopoietic cell transplantation for metastatic renal cell carcinoma after nonmyeloablative conditioning: toxicity, clinical response, and immunological response to minor histocompatibility antigens. Clin. Cancer Res. 10(23), 7799–7811 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.