80
Views
29
CrossRef citations to date
0
Altmetric
Review

Molecularly targeted therapy in renal cell carcinoma

, &
Pages 1031-1040 | Published online: 10 Jan 2014

References

  • Bukowski RM. Cytokine therapy for metastatic renal cell carcinoma. Semin. Urol. Oncol. 19(2), 148–154 (2001).
  • Gnarra JR, Tory K, Weng Y et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7(1), 85–90 (1994).
  • Shuin T, Kondo K, Torigoe S et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res. 54(11), 2852–2855 (1994).
  • Herman JG, Latif F, Weng Y et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA 91(21), 9700–9704 (1994).
  • Gnarra JR, Lerman MI, Zbar B, Linehan WM. Genetics of renal-cell carcinoma and evidence for a critical role for von Hippel-Lindau in renal tumorigenesis. Semin. Oncol. 22(1), 3–8 (1995).
  • Kondo K, Yao M, Yoshida M et al. Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer 34(1), 58–68 (2002).
  • Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel-Lindau tumor suppressor protein to elongin B and C. Science 269(5229), 1444–1446 (1995).
  • Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733), 271–275 (1999).
  • Cockman ME, Masson N, Mole DR et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275(33), 25733–25741 (2000).
  • Ivan M, Haberberger T, Gervasi DC et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99(21), 13459–13464 (2002).
  • Pugh CW, Ratcliffe PJ. The von Hippel-Lindau tumor suppressor, hypoxia-inducible factor-1 (HIF-1) degradation, and cancer pathogenesis. Semin. Cancer Biol. 13(1), 83–89 (2003).
  • Jaakkola P, Mole DR, Tian YM et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516), 468–472 (2001).
  • Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93(20), 10595–10599 (1996).
  • Kourembanas S, Morita T, Liu Y, Christou H. Mechanisms by which oxygen regulates gene expression and cell–cell interaction in the vasculature. Kidney Int. 51(2), 438–443 (1997).
  • Wiesener MS, Munchenhagen PM, Berger I et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1α in clear cell renal carcinomas. Cancer Res. 61(13), 5215–5222 (2001).
  • Knebelmann B, Ananth S, Cohen HT, Sukhatme VP. Transforming growth factor α is a target for the von Hippel-Lindau tumor suppressor. Cancer Res. 58(2), 226–231 (1998).
  • Gunaratnam L, Morley M, Franovic A et al. Hypoxia inducible factor activates the transforming growth factor-α/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J. Biol. Chem. 278(45), 44966–44974 (2003).
  • de Paulsen N, Brychzy A, Fournier MC et al. Role of transforming growth factor-α in von Hippel-Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. Proc. Natl Acad. Sci. USA 98(4), 1387–1392 (2001).
  • Maxwell PH, Pugh CW, Ratcliffe PJ. The pVHL–hIF-1 system. A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol. 502, 365–376 (2001).
  • Stadler WM, Richards JM, Vogelzang NJ. Serum interleukin-6 levels in metastatic renal cell cancer: correlation with survival but not an independent prognostic indicator. J. Natl Cancer Inst. 84(23), 1835–1836 (1992).
  • Negrier S, Perol D, Menetrier-Caux C et al. Interleukin-6, interleukin-10, and vascular endothelial growth factor in metastatic renal cell carcinoma: prognostic value of interleukin-6-from the Groupe Francais d'Immunotherapie. J. Clin. Oncol. 22(12), 2371–2378 (2004).
  • Grabmaier K, A de Weijert MC , Verhaegh GW, Schalken JA, Oosterwijk E. Strict regulation of CAIX(G250/MN) by HIF-1α in clear cell renal cell carcinoma. Oncogene 23(33), 5624–5631 (2004).
  • Vissers JL, De Vries IJ, Engelen LP et al. Renal cell carcinoma-associated antigen G250 encodes a naturally processed epitope presented by human leukocyte antigen-DR molecules to CD4(+) T-lymphocytes. Int. J. Cancer 100(4), 441–444 (2002).
  • Latif F, Tory K, Gnarra J et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260(5112), 1317–1320 (1993).
  • Brauch H, Hoeppner W, Jahnig H et al. Sporadic pheochromocytomas are rarely associated with germline mutations in the vhl tumor suppressor gene or the ret protooncogene. J. Clin. Endocrinol. Metab. 82(12), 4101–4104 (1997).
  • Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 22(3), 200–209 (1998).
  • Kenck C, Wilhelm M, Bugert P, Staehler G, Kovacs G. Mutation of the VHL gene is associated exclusively with the development of non-papillary renal cell carcinomas. J. Pathol. 179(2), 157–161 (1996).
  • Bard RH, Mydlo JH, Freed SZ. Detection of tumor angiogenesis factor in adenocarcinoma of kidney. Urology 27(5), 447–450 (1986).
  • Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23(5), 1011–1027 (2005).
  • Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146(5), 1029–1039 (1995).
  • Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. EXS 79, 209–232 (1997).
  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103(2), 159–165 (1999).
  • Jain RK, Safabakhsh N, Sckell A et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 95(18), 10820–10825 (1998).
  • Watanabe Y, Lee SW, Detmar M, Ajioka I, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) delays and induces escape from senescence in human dermal microvascular endothelial cells. Oncogene 14(17), 2025–2032 (1997).
  • ••Seminal manuscript that was at the forefront in providing evidence of the active mechanisms of regulation of the microvasculature.
  • Seliger B, Menig M, Lichtenfels R et al. Identification of markers for the selection of patients undergoing renal cell carcinoma-specific immunotherapy. Proteomics 3(6), 979–990 (2003).
  • Bleumer I, Knuth A, Oosterwijk E et al. A Phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients. Br. J. Cancer 90(5), 985–990 (2004).
  • Brouwers A, Mulders P, Oosterwijk E et al. Pharmacokinetics and tumor targeting of 131I-labeled F(ab')2 fragments of the chimeric monoclonal antibody G250: preclinical and clinical pilot studies. Cancer Biother. Radiopharm. 19(4), 466–477 (2004).
  • Divgi CR, O'Donoghue JA, Welt S et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J. Nucl. Med. 45(8), 1412–1421 (2004).
  • Brouwers A, Verel I, Van Eerd J et al. PET radioimmunoscintigraphy of renal cell cancer using 89Zr-labeled cG250 monoclonal antibody in nude rats. Cancer Biother. Radiopharm. 19(2), 155–163 (2004).
  • Liu MY, Poellinger L, Walker CL. Upregulation of hypoxia-inducible factor 2α in renal cell carcinoma associated with loss of Tsc-2 tumor suppressor gene. Cancer Res. 63(10), 2675–2680 (2003).
  • Parry L, Maynard JH, Patel A et al. Analysis of the TSC1 and TSC2 genes in sporadic renal cell carcinomas. Br. J. Cancer 85(8), 1226–1230 (2001).
  • Hudson CC, Liu M, Chiang GG et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22(20), 7004–7014 (2002).
  • Zundel W, Schindler C, Haas-Kogan D et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14(4), 391–396 (2000).
  • Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4(2), 147–158 (2003).
  • Brugarolas J, Kaelin WG Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6(1), 7–10 (2004).
  • Presta LG, Chen H, O'Connor SJ et al. Humanization of an antivascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57(20), 4593–4599 (1997).
  • Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized antiVEGF antibody in vitro. Angiogenesis 7(4), 335–345 (2004).
  • Yang JC, Haworth L, Sherry RM et al. A randomized trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349(5), 427–434 (2003).
  • Yang JC. Bevacizumab for patients with metastatic renal cancer: an update. Clin. Cancer Res. 10(18 Pt 2), S6367–S6370 (2004).
  • Rini BI, Halabi S, Taylor J, Small EJ, Schilsky RL. Cancer and Leukemia Group B 90206: a randomized Phase III trial of interferon-α or interferon-α plus antivascular endothelial growth factor antibody (bevacizumab) in metastatic renal cell carcinoma. Clin. Cancer Res. 10(8), 2584–2586 (2004).
  • Gabrilovich DI, Cunningham HT, Carbone DP. IL-12 and mutant P53 peptide-pulsed dendritic cells for the specific immunotherapy of cancer. J. Immunother. Emphasis Tumor Immunol. 19(6), 414–418 (1996).
  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5(10), 2963–2970 (1999).
  • Sun L, Liang C, Shirazian S et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 46(7), 1116–1119 (2003).
  • Mendel DB, Laird AD, Xin X et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9(1), 327–337 (2003).
  • Motzer RJ, Rini BI, Michaelson MD et al. Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC). Proc. Am. Soc. Clin. Oncol. 23(16S), 4508 (2005).
  • Joneson T, Bar-Sagi D. Ras effectors and their role in mitogenesis and oncogenesis. J. Mol. Med. 75(8), 587–593 (1997).
  • Bar-Sagi D. A Ras by any other name. Mol. Cell. Biol. 21(5), 1441–1443 (2001).
  • Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8(3), 219–225 (2001).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64(19), 7099–7109 (2004).
  • Ratain MJ, Eisen T, Stadler WM et al. Final findings from a Phase II, placebo-controlled, randomized discontinuation trial (RDT) of sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). Proc. Am. Soc. Clin. Oncol. 23(16S), 4544 (2005).
  • Escudier B, Szczylik C, Eisen T et al. Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43–9006) in patients with advanced renal cell carcinoma (RCC). Proc. Am. Soc. Clin. Oncol. 23(16S), 4510 (2005).
  • Inai T, Mancuso M, Hashizume H et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165(1), 35–52 (2004).
  • Rini B, Rixe O, Bukowski R et al. AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates antitumor activity in a Phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). Proc. Am. Soc. Clin. Oncol. 23(16S), 4509 (2005).
  • Fabian MA, Biggs WH III, Treiber DK et al. A small molecule–kinase interaction map for clinical kinase inhibitors. Nature Biotechnol. 23(3), 329–336 (2005).
  • Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int. 63(3), 917–926 (2003).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22(5), 909–918 (2004).
  • Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-α as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J. Clin. Oncol. 20(1), 289–296 (2002).
  • Visapaa H, Seligson D, Huang Y et al. Ki67, gelsolin and PTEN expression in sarcomatoid renal tumors. Urol. Res. 30(6), 387–389 (2003).
  • Smith K, Gunaratnam L, Morley M, Franovic A, Mekhail K, Lee S. Silencing of epidermal growth factor receptor suppresses hypoxia-inducible factor-2-driven VHL-/- renal cancer. Cancer Res. 65(12), 5221–5230 (2005).
  • Prewett M, Rothman M, Waksal H, Feldman M, Bander NH, Hicklin DJ. Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin. Cancer Res. 4(12), 2957–2966 (1998).
  • Weber KL, Doucet M, Price JE, Baker C, Kim SJ, Fidler IJ. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice. Cancer Res. 63(11), 2940–2947 (2003).
  • Motzer RJ, Amato R, Todd M et al. Phase II trial of anti-epidermal growth factor receptor antibody C225 in patients with advanced renal cell carcinoma. Invest. New Drugs 21(1), 99–101 (2003).
  • Drucker B, Bacik J, Ginsberg M et al. Phase II trial of ZD1839 (IRESSA) in patients with advanced renal cell carcinoma. Invest. New Drugs 21(3), 341–345 (2003).
  • Dawson NA, Guo C, Zak R et al. A Phase II trial of gefitinib (Iressa, ZD1839) in stage IV and recurrent renal cell carcinoma. Clin. Cancer Res. 10(23), 7812–7819 (2004).
  • Viloria-Petit A, Crombet T, Jothy S et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 61(13), 5090–5101 (2001).
  • Spigel DR, Hainsworth JD, Sosman JA et al. Bevacizumab and erlotinib in the treatment of patients with metastatic renal carcinoma (RCC): update of a Phase II multicenter trial. Proc. Am. Soc. Clin. Oncol. 23(16S), 4540 (2005).
  • Gemmill RM, Zhou M, Costa L, Korch C, Bukowski RM, Drabkin HA. Synergistic growth inhibition by Iressa and Rapamycin is modulated by VHL mutations in renal cell carcinoma. Br. J. Cancer 92(12), 2266–2277 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.