47
Views
18
CrossRef citations to date
0
Altmetric
Review

Targeting the stromal fibroblasts: a novel approach to melanoma therapy

, &
Pages 1069-1078 | Published online: 10 Jan 2014

References

  • Diepgen TL, Mahler V. The epidemiology of skin cancer. Br. J. Dermatol.146(Suppl. 61), S1–S6 (2002).
  • Marks R. Epidemiology of melanoma. Clin. Exp. Dermatol. 25(6), 459–463 (2000).
  • Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12(1), 69–82 (2001).
  • Bishop DT, Demenais F, Goldstein AM et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J. Natl Cancer Inst.94(12), 894–903 (2002).
  • Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature 417(6892), 949–954 (2002).
  • Smalley KSM. A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int. J. Cancer104(5), 527–532 (2003).
  • Lee ML, Tomsu K, Von Eschen KB. Duration of survival for disseminated malignant melanoma: results of a meta-analysis. Melanoma Res.10(1), 81–92 (2000).
  • Serrone L, Zeuli M, Sega FM, Cognetti F. Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J. Exp. Clin. Cancer Res. 19(1), 21–34 (2000).
  • Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene 22(20), 3138–3151 (2003).
  • Labrousse AL, Ntayi C, Hornebeck W, Bernard P. Stromal reaction in cutaneous melanoma. Crit. Rev. Oncol. Hematol. 49(3), 269–275 (2004).
  • Ruiter D, Bogenrieder T, Elder D, Herlyn M. Melanoma–stroma interactions: structural and functional aspects. Lancet Oncol. 3(1), 35–43 (2002).
  • Bissell MJ, Radisky D. Putting tumors in context. Nature Rev. Cancer 1(1), 46–54 (2001).
  • Nakhleh RE, Wick MR, Rocamora A, Swanson PE, Dehner LP. Morphologic diversity in malignant melanomas. Am. J. Clin. Pathol.93(6), 731–740 (1990).
  • Banerjee SS, Harris M. Morphological and immunophenotypic variations in malignant melanoma. Histopathology 36(5), 387–402 (2000).
  • Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34(3), 255–268 (2002).
  • Haass NK, Smalley KSM, Herlyn M. The role of altered cell–cell communication in melanoma progression. J. Mol. Hist. 35(3), 309–318 (2004).
  • Tang A, Eller MS, Hara M et al. E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J. Cell. Sci. 107(Pt 4), 983–992 (1994).
  • Hsu MY, Meier FE, Nesbit M et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 156(5), 1515–1525 (2000).
  • Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 61(9), 3819–3825 (2001).
  • Smalley KSM, Brafford P, Haass NK et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am. J. Pathol. 166(5), 1541–1554 (2005).
  • Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315(26), 1650–1659 (1986).
  • Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264(1), 169–184 (2001).
  • Nakayama H, Enzan H, Miyazaki E et al. The role of myofibroblasts at the tumor border of invasive colorectal adenocarcinomas. Jpn J. Clin. Oncol. 28(10), 615–620 (1998).
  • Tsukamoto H, Mishima Y, Hayashibe K, Sasase A. α-Smooth muscle actin expression in tumor and stromal cells of benign and malignant human pigment cell tumors. J. Invest. Dermatol. 98(1), 116–120 (1992).
  • Cunha GR, Hayward SW, Wang YZ, Ricke WA. Role of the stromal microenvironment in carcinogenesis of the prostate. Int. J. Cancer107(1), 1–10 (2003).
  • Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp. Cell Res. 304(1), 81–90 (2005).
  • De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J. Pathol. 200(4), 429–447 (2003).
  • Direkze NC, Hodivala-Dilke K, Jeffery R et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64(23), 8492–8495 (2004).
  • Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425(6958), 577–584 (2003).
  • Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19(38), 4337–4345 (2000).
  • Skobe M, Fusenig NE. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA 95(3), 1050–1055 (1998).
  • D’Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am. J. Pathol. 158(6), 2031–2041 (2001).
  • Rockey DC, Chung JJ. Endothelin antagonism in experimental hepatic fibrosis. Implications for endothelin in the pathogenesis of wound healing. J. Clin. Invest. 98(6), 1381–1388 (1996).
  • Ronnov-Jessen L, Petersen OW. Induction of α-smooth muscle actin by transforming growth factor-β 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab. Invest. 68(6), 696–707 (1993).
  • Garinchesa P, Old LJ, Rettig WJ. Cell-surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl Acad. Sci. USA 87(18), 7235–7239 (1990).
  • Rettig WJ, Garinchesa P, Beresford HR et al. Cell-surface glycoproteins of human sarcomas – differential expression in normal and malignant-tissues and cultured-cells. Proc. Natl Acad. Sci. USA 85(9), 3110–3114 (1988).
  • Huber MA, Kraut N, Park JE et al. Fibroblast activation protein: differential expression and serine protease activity in reactive stromal fibroblasts of melanocytic skin tumors. J. Invest. Dermatol. 120(2), 182–188 (2003).
  • Ramirez-Montagut T, Blachere NE, Sviderskaya EV et al. FAP-α, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 23(32), 5435–5446 (2004).
  • Gallagher PG, Bao YD, Prorock A et al. Gene expression profiling reveals cross-talk between melanoma and fibroblasts: implications for host–tumor interactions in metastasis. Cancer Res. 65(10), 4134–4146 (2005).
  • Krasagakis K, Kruger-Krasagakes S, Fimmel S et al. Desensitization of melanoma cells to autocrine TGF-β isoforms. J. Cell. Physiol. 178(2), 179–187 (1999).
  • VanBelle P, Rodeck U, Nuamah I, Halpern AC, Elder DE. Melanoma-associated expression of transforming growth factor-β isoforms. Am. J. Pathol. 148(6), 1887–1894 (1996).
  • Berking C, Takemoto R, Schaider H et al. Transforming growth factor-β 1 increases survival of human melanoma through stroma remodeling. Cancer Res. 61(22), 8306–8316 (2001).
  • Verrecchia F, Chu ML, Mauviel A. Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J. Biol. Chem. 276(20), 17058–17062 (2001).
  • Meier F, Nesbit M, Hsu MY et al. Human melanoma progression in skin reconstructs – biological significance of bFGF. Am. J. Pathol. 156(1), 193–200 (2000).
  • Micke P, Ostman A. Tumour–stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 45(Suppl. 2), S163–S175 (2004).
  • Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M. Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and β-catenin pathways. Cancer Res. 61(19), 7318–7324 (2001).
  • Satyamoorthy K, Li G, Vaidya B, Kalabis J, Herlyn M. Insulin-like growth factor-I-induced migration of melanoma cells is mediated by interleukin-8 induction. Cell Growth Differ. 13(2), 87–93 (2002).
  • Orimo A, Gupta PB, Sgroi DC et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3), 335–348 (2005).
  • Cornil I, Theodorescu D, Man S et al. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression. Proc. Natl Acad. Sci. USA 88(14), 6028–6032 (1991).
  • De Wever O, Nguyen QD, Van Hoorde L et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent proinvasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18(6), 1016–1018 (2004).
  • Edward M, Gillan C, Micha D, Tammi RH. Tumour regulation of fibroblast hyaluronan expression: a mechanism to facilitate tumor growth and invasion. Carcinogenesis 26(7), 1215–1223 (2005).
  • Liotta LA, Kohn EC. The microenvironment of the tumor–host interface. Nature 411(6835), 375–379 (2001).
  • Loffek S, Zigrino P, Angel P et al. High invasive melanoma cells induce matrix metalloproteinase-1 synthesis in fibroblasts by interleukin-1 α and basic fibroblast growth factor-mediated mechanisms. J. Invest. Dermatol. 124(3), 638–643 (2005).
  • Opdenakker G, Van Damme J. The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int. J. Dev. Biol. 48(5–6), 519–527 (2004).
  • Liu ZJ, Snyder R, Soma A et al. VEGF-A and α(V)β(3) integrin synergistically rescue angiogenesis via N-Ras and PI3-K signaling in human microvascular endothelial cells. FASEB J. 17(11), 1931–1933 (2003).
  • Velazquez OC, Snyder R, Liu ZJ, Fairman RM, Herlyn M. Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like, three-dimensional networks. FASEB J. 16(8), 1316–1318 (2002).
  • Meredith JE, Fazeli B, Schwartz MA. The extracellular-matrix as a cell-survival factor. Mol. Biol. Cell 4(9), 953–961 (1993).
  • Frisch SM, Screaton RA. Anoikis mechanisms. Curr. Opin. Cell Biol. 13(5), 555–562 (2001).
  • Kraus AC, Ferber I, Bachmann SO et al. In vitro chemo- and radio-resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAPK pathways. Oncogene 21(57), 8683–8695 (2002).
  • Sethi T, Rintoul RC, Moore SM et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Med. 5(6), 662–668 (1999).
  • Berube M, Talbot M, Collin C et al. Role of the extracellular matrix proteins in the resistance of SP6.5 uveal melanoma cells toward cisplatin. Int. J. Oncol. 26(2), 405–413 (2005).
  • Giannelli G, Azzariti A, Fransvea E et al. Laminin-5 offsets the efficacy of gefitinib (‘Iressa’) in hepatocellular carcinoma cells. Br. J. Cancer 91(11), 1964–1969 (2004).
  • Narita T, Kimura N, Sato M, Matsuura N, Kannagi R. Altered expression of integrins in adriamycin-resistant human breast cancer cells. Anticancer Res. 18(1A), 257–262 (1998).
  • Folkman J, Moscona A. Role of cell-shape in growth-control. Nature 273(5661), 345–349 (1978).
  • Bhowmick NA, Chytil A, Plieth D et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659), 848–851 (2004).
  • Olumi AF, Grossfeld GD, Hayward SW et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59(19), 5002–5011 (1999).
  • Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60(5), 1254–1260 (2000).
  • Ohuchida K, Mizumoto K, Murakami M et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor–stromal interactions. Cancer Res. 64(9), 3215–3222 (2004).
  • Hu M, Yao J, Cai L et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genet. 37(8), 899–905 (2005).
  • Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl Acad. Sci. USA 73(2), 549–553 (1976).
  • Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72(9), 3585–3589 (1975).
  • Weaver VM, Petersen OW, Wang F et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137(1), 231–245 (1997).
  • Overall CM, Lopez-Otin C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2(9), 657–672 (2002).
  • Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3(3), 207–214 (2002).
  • Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6), 513–520 (2005).
  • Posey JA, Khazaeli MB, DelGrosso A et al. A pilot trial of Vitaxin®, a humanized anti-vitronectin receptor (anti-α v β 3) antibody in patients with metastatic cancer. Cancer Biother. Radiopharm. 16(2), 125–132 (2001).
  • Sawyers C. Targeted cancer therapy. Nature 432(7015), 294–297 (2004).
  • Dumont N, Arteaga CL. Targeting the TGF β signaling network in human neoplasia. Cancer Cell 3(6), 531–536 (2003).
  • Scotlandi K, Manara MC, Nicoletti G et al. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res. 65(9), 3868–3876 (2005).
  • Min Y, Adachi Y, Yamamoto H et al. Insulin-like growth factor I receptor blockade enhances chemotherapy and radiation responses and inhibits tumor growth in human gastric cancer xenografts. Gut 54(5), 591–600 (2005).
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther. 291(1), 367–373 (1999).
  • Scott AM, Wiseman G, Welt S et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9(5), 1639–1647 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.