92
Views
31
CrossRef citations to date
0
Altmetric
Review

Positron emission tomography: clinical applications in oncology. Part 1

, &
Pages 1079-1093 | Published online: 10 Jan 2014

References

  • Mochizuki T, Tsukamoto E, Kuge Y et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J. Nucl. Med. 42, 1551–1555 (2001).
  • McGowan KM, Long SD, Pekala PH. Glucose transporter gene expression: regulation of transcription and mRNA stability. Pharmacol. Ther. 66, 465–505 (1995).
  • Delbeke D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma, and melanoma. J. Nucl. Med. 40, 591–603 (1999).
  • Avril N, Menzel M, Dose J et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J. Nucl. Med. 42, 9–16 (2001).
  • Ak I, Stokkel MP, Pauwels EK. Positron emission tomography with 2-[18F] fluoro-2-deoxy-d-glucose in oncology: part II: the clinical value in detecting and staging primary tumours. J. Cancer Res. Clin. Oncol. 126, 560–574 (2000).
  • Bos R, van Der Hoeven JJ, van Der Wall E et al. Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J. Clin. Oncol. 20, 379–387 (2002).
  • Zhuang H, Pourdehnad M, Lambright ES et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J. Nucl. Med. 42, 1412–1417 (2001).
  • Larson SM. Cancer or inflammation? A holy grail for nuclear medicine. J. Nucl. Med. 35, 1653–1655 (1994).
  • Konishi J, Yamazaki K, Tsukamoto E et al. Mediastinal lymph node staging by FDG-PET in patients with non-small cell lung cancer: analysis of false-positive FDG-PET findings. Respiration 70, 500–506 (2003).
  • Wilkinson MD, Fulham MJ, McCaughan BC et al. Invasive aspergillosis mimicking stage IIIA non-small-cell lung cancer on FDG positron emission tomography. Clin. Nucl. Med. 28, 234–235 (2003).
  • Mavi A, Lakhani P, Zhuang H, Gupta NC, Alavi A. Fluorodeoxyglucose-PET in characterizing solitary pulmonary nodules, assessing pleural diseases, and the initial staging, restaging, therapy planning and monitoring response of lung cancer. Radiol. Clin. North Am. 43, 1–21 (2005).
  • Acker MR, Burrell SC. Utility of 18F-FDG PET in evaluating cancers of lung. J. Nucl. Med.Technol. 33, 69–74 (2005).
  • Haberkorn U, Schoenberg SO. Imaging of lung cancer with CT, MRI and PET. Lung Cancer 34, S13–S23 (2001).
  • Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285, 914–924 (2001).
  • Coleman RE, Laymon CM, Turkington TG. FDG imaging of lung nodules: a phantom study comparing SPECT, camera-based PET, and dedicated PET. Radiology 210, 823–828 (1999).
  • Shreve PD, Steventon RS, Deters EC, Kison PV, Gross MD, Wahl RL. Oncologic diagnosis with 2-[fluorine-18]fluoro-2-deoxy-d-glucose imaging: dual-head coincidence γ camera versus positron emission tomographic scanner. Radiology 207, 431–437 (1998).
  • Kubota K, Matsuzawa T, Fujiwara T et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study. J. Nucl. Med. 31, 1927–1932 (1990).
  • Bury T, Dowlati A, Paulus P et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging. Eur. Respir. J. 9, 410–414 (1996).
  • Gupta NC, Maloof J, Gunel E. Probability of malignancy in solitary pulmonary nodules using fluorine-18-FDG and PET. J. Nucl. Med. 37, 943–948 (1996).
  • Fletcher JW. PET scanning and the solitary pulmonary nodule. Semin. Thorac. Cardiovasc. Surg. 14, 268–274 (2002).
  • Herder GJ, Golding RP, Hoekstra OS et al. The performance of (18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules. Eur. J. Nucl. Med. Mol. Imaging 31, 1231–1236 (2004).
  • Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J. Nucl. Med. 43, 871–875 (2002).
  • Hustinx R, Dolin RJ, Benard F et al. Impact of attenuation correction on the accuracy of FDG-PET in patients with abdominal tumors: a free-response ROC analysis. Eur. J. Nucl. Med. 27, 1365–1371 (2000).
  • Lowe VJ, Duhaylongsod FG, Patz EF et al Pulmonary abnormalities and PET data analysis: a retrospective study. Radiology 202, 435–439 (1997).
  • Kim BT, Kim Y, Lee KS et al. Localized form of bronchoalveolar carcinoma: FDG PET findings. AJR Am. J. Roengenol. 170, 935–939 (1997).
  • Erasmus JJ, McAdams HP, Patz EF, Coleman RE, Ahuja V, Goodman PD. Evaluation of primary pulmonary carcinoid tumors using positron emission tomography with 18F-fluorodeoxyglucose. AJR Am. J. Roentgenol. 170, 1369–1373 (1998).
  • Tateishi U, Nishihara H, Tsukamoto E et al. Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J. Comp. Assist. Tomogr. 26, 185–190 (2002).
  • Brown RS, Leung JY, Kison PV et al. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J. Nucl. Med. 40, 556–565 (1999).
  • Marom EM, Aloia TA, Moore MB et al. Correlation of FDG-PET imaging with Glut-1 and Glut-3 expression in earlystage non-small cell lung cancer. Lung Cancer 33, 99–107 (2001).
  • Webb WR, Golden JA. Imaging strategies in the staging of lung cancer. Clin. Chest Med. 12, 133–150 (1991).
  • Erasmus JJ, McAdams HP, Rossi SE et al. FDG PET of pleural effusions in patients with non-small cell lung cancer. AJR Am. J. Roentgenol. 175, 245–249 (2000).
  • Gupta NC, Rogers JS, Graeber GM et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest 122, 1918–1924 (2002).
  • Van Schil PE, Van HRH, Schoofs EL. The value of mediastinoscopy in preoperative staging of bronchogenic carcinoma. J. Thorac. Cardiovasc. Surg. 97, 240–244 (1989).
  • Patterson GA, Ginsberg RJ, Poon PY et al. A prospective evaluation of magnetic resonance imaging, computed tomography, and mediastinoscopy in the preoperative assessment of mediastinal node status in bronchogenic carcinoma. J. Thorac. Cardiovasc. Surg. 94, 679–684 (1987).
  • Scott WJ, Gobar LS, Terry JD, Dewan NA, Sunderland JJ. Mediastinal lymph node staging of non-small-cell lung cancer: a prospective comparison of computed tomography and positron emission tomography. J. Thorac. Cardiovasc. Surg. 111, 642–648 (1996).
  • Steinert HC, Hauser M, Allemann F et al. Non-small cell lung cancer: nodal staging with FDG PET versus CT with correlative lymph node mapping and sampling. Radiology 202, 441–446 (1997).
  • Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL. Metastases from non-small cell lung cancer: mediastinal staging in the 1990s-meta-analytic comparison of PET and CT. Radiology 213, 530–536 (1999).
  • Gould MK, Kuschner WG, Rydzak CE et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann. Intern. Med. 139, 879–892 (2003).
  • D’Amico TA, Wong TZ, Harpole DH, Brown SD, Coleman RE. Impact of computed tomography-positron emission tomography fusion in staging patients with thoracic malignancies. Ann. Thorac. Surg. 74, 160–163 (2002).
  • Giraud P, Grahek D, Montravers F et al. CT and (18)F-deoxyglucose (FDG) image fusion for optimization of conformal radiotherapy of lung cancers. Int. J. Radiat. Oncol. Biol. Phys. 49, 1249–1257 (2001).
  • Cerfolio RJ, Ojha B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA. The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with non-small cell lung cancer. Ann. Thorac. Surg. 78, 1017–1023 (2004).
  • Lardinois D, Weder W, Hany T et al. Staging of non-small cell lung cancer with integrated positron-emission tomography and computed tomography. N. Engl. J. Med. 348, 2500–2507 (2003).
  • Schrevens L, Lorent N, Dooms C, Vansteenkiste J. The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer. Oncologist 9, 633–643 (2004).
  • Ukena D, Hellwig D. Value of FDG PET in the management of NSCLC. Lung Cancer 45, S75–S78 (2004).
  • Foo SS, Ramdave S, Berlangieri SU, Scott AM. Detection of occult bone metastases of lung cancer with fluorine-18 fluorodeoxyglucose positron emission tomography. Australas. Radiol. 48, 214–216 (2004).
  • Kumar R, Xiu Y, Yu JQ et al. 18F-FDG PET in evaluation of adrenal lesions in patients with lung cancer. J. Nucl. Med. 45, 2058–2062 (2004).
  • Lamki LM. Positron emission tomography, bronchogenic carcinoma, and the adrenals. AJR Am. J. Roentgenol. 168, 1361–1362 (1997).
  • Erasmus JJ, Patz EF Jr, McAdams HP et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. AJR Am. J. Roentgenol. 168, 1357–1360 (1997).
  • Bury T, Dowlati A, Paulus P et al. Whole-body 18FDG positron emission tomography in the staging of non-small cell lung cancer. Eur. Respir. J. 10, 2529–2534 (1997).
  • van Tinteren H, Hoekstra OS, Smit EF et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359, 1388–1393 (2002).
  • Vansteenkiste J, Fischer BM, Dooms C, Mortensen J. Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol. 5, 531–540 (2004).
  • Hebert ME, Lowe VJ, Hoffman JM, Patz EF, Anscher MS. Positron emission tomography in the pretreatment evaluation and follow-up of non-small cell lung cancer patients treated with radiotherapy: preliminary findings. Am. J. Clin. Oncol. 19, 416–421 (1996).
  • Sasaki R, Komaki R, Macapinlac H et al. [18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J. Clin. Oncol. 23, 1136–1143 (2005).
  • Kelly RF, Tran T, Holmstrom A, Murar J, Segurola RJ Jr. Accuracy and cost-effectiveness of [18F]-2-fluoro-deoxy-d-glucose-positron emission tomography scan in potentially resectable non-small cell lung cancer. Chest 125, 1413–1423 (2004).
  • Verboom P, van Tinteren H, Hoekstra OS et al. Cost-effectiveness of FDG-PET in staging non-small cell lung cancer: the PLUS study. Eur. J. Nucl. Med. Mol. Imaging 30, 1444–1449 (2003).
  • Jemal A, Murray T, Ward E et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).
  • Kantorova I, Lipska L, Belohlavek O, Visokai V, Trubac M, Schneiderova M. Routine (18)F-FDG PET preoperative staging of colorectal cancer: comparison with conventional staging and its impact on treatment decision making. J. Nucl. Med. 44, 1784–1788 (2003).
  • Bipat S, van Leeuwen MS, Comans EF et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis-meta-analysis. Radiology (2005) (In Press).
  • Delbeke D, Martin WH. PET and PET-CT for evaluation of colorectal carcinoma. Semin. Nucl. Med. 34, 209–223 (2004).
  • Arulampalam T, Costa D, Visvikis D, Boulos P, Taylor I, Ell P. The impact of FDG-PET on the management algorithm for recurrent colorectal cancer. Eur. J. Nucl. Med. 28, 1758–1765 (2001).
  • Calvo FA, Domper M, Matute R et al. 18F-FDG positron emission tomography staging and restaging in rectal cancer treated with preoperative chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 58, 528–535 (2004).
  • Vitola JV, Delbeke D, Meranze SG, Mazer MJ, Pinson CW. Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer 78, 2216–2222 (1996).
  • Valk PE, Abella-Columna E, Haseman MK et al. Whole-body PET imaging with [18F]fluorodeoxyglucose in management of recurrent colorectal cancer. Arch. Surg. 134, 503–511 (1999).
  • Zealley IA, Skehan SJ, Rawlinson J, Coates G, Nahmias C, Somers S. Selection of patients for resection of hepatic metastases: improved detection of extrahepatic disease with FDG PET. Radiographics 21, S55–S69 (2001).
  • Huebner RH, Park KC, Shepherd JE. A meta-analysis of the literature for whole-body FDG PET detection of colorectal cancer. J. Nucl. Med. 41, 1177–1189 (2000).
  • Cohade C, Osman M, Leal J et al. Direct comparison of FDG PET and PET-CT imaging in colorectal carcinoma. J. Nucl. Med. 44, 1797–1803 (2003).
  • Selzner M, Hany TF, Wildbrett P, McCormack L, Kadry Z, Clavien PA. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann. Surg. 240, 1027–1036 (2004).
  • Rosenberg RD, Hunt WC, Williamson MR et al. Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology 209, 511–518 (1998).
  • Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225, 165–175 (2002).
  • Kumar R, Alavi A. Fluorodeoxyglucose-PET in the management of breast cancer. Radiol. Clin. North Am. 42, 1113–1122 (2004).
  • Kumar R, Mitchell S, Alavi A. 18F-FDG uptake and breast density in women with normal breast tissue. J. Nucl. Med. 45, 1423–1424 (2004).
  • Schirrmeister H, Kuhn T, Guhlmann A et al. Fluorine-18-2-deoxy-2-fluoro-d-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur. J. Nucl. Med. 28, 351–358 (2001).
  • Buck A, Schirrmeister H, Kuhn T et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur. J. Nucl. Med. Mol. Imaging 29, 1317–1323 (2002).
  • Hockenberry D. Defining apoptosis. Am. J. Pathol. 146, 16–19 (1995).
  • Lovrics PJ, Chen V, Coates G et al. A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann. Surg. Oncol. 11, 846–853 (2004).
  • Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin. Nucl. Med. 35, 84–99 (2005).
  • Schelling M, Avril N, Nahrig J et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J. Clin. Oncol. 18, 1689–1695 (2000).
  • Bassa P, Kim EE, Inoue T et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J. Nucl. Med. 37, 931–938 (1996).
  • Smith IC, Welch AE, Hutcheon AW et al. Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J. Clin. Oncol. 18, 1676–1688 (2000).
  • Van Dongen JA, Voogd AC, Fentiman IS et al. Long-term results of a randomized trial comparing breast conserving therapy and mastectomy: Europian organization for research and treatment of cancer 10801 trial. J. Natl. Cancer Inst. 92, 1143–1150 (2000).
  • Mankoff DA, Dunnwald LK, Gralow JR et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J. Nucl. Med. 43, 500–509 (2002).
  • Tseng J, Dunnwald LK, Schubert EK et al. 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J. Nucl. Med. 45, 1829–1837 (2004).
  • Chen X, Moore MO, Lehman CD et al. Combined use of MRI and PET to monitor response and assess residual disease for locally advanced breast cancer treated with neoadjuvant chemotherapy. Acad. Radiol. 11, 1115–1124 (2004).
  • Gennari A, Donati S, Salvadori B. Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin. Breast Cancer 1, 156–161 (2000).
  • Stafford SE, Gralow JR, Schubert EK et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad. Radiol. 9, 913–921 (2002).
  • Wahl RL. Current status of breast cancer imaging, staging and therapy. Semin. Roentgenol. 36, 250–260 (2001).
  • Gallowitsch HJ, Kresnik E, Gasser J et al. F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest. Radiol. 38, 250–256 (2003).
  • Kamel EM, Wyss MT, Fehr MK, von Schulthess GK, Goerres GW. [18F]-Fluorodeoxyglucose positron emission tomography in patients with suspected recurrence of breast cancer. J. Cancer Res. Clin. Oncol. 129, 147–153 (2003).
  • Eubank WB, Mankoff DA, Vesselle HJ et al. Detection of locoregional and distant recurrences in breast cancer patients by using FDG PET. Radiographics 22, 5–17 (2002).
  • Weihrauch MR, Re D, Bischoff S et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann. Hematol. 81, 20–25 (2002).
  • Bangerter M, Moog F, Buchmann I et al. Whole-body 2-[18F]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann. Oncol. 9, 1117–1122 (1998).
  • Jerusalem GH, Beguin YP. Positron emission tomography in non-Hodgkin’s lymphoma (NHL): relationship between tracer uptake and pathological findings, including preliminary experience in the staging of low-grade NHL. Clin. Lymphoma 3, 56–61 (2002).
  • Friedberg JW, Chengazi V. PET scans in the staging of lymphoma: current status. Oncologist 8, 438–447 (2003).
  • Delbeke D, Martin WH, Morgan DS et al. 2-deoxy-2-[F-18]fluoro-d-glucose imaging with positron emission tomography for initial staging of Hodgkin’s disease and lymphoma. Mol. Imaging Biol. 4, 105–114 (2002).
  • Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Sculthess GK. Whole body positron emission tomography using FDG for staging lymphoma: effectiveness and comparison with computed tomography. Eur. J. Nucl. Med. 25, 721–728 (1998).
  • Buchmann I, Reinhardt M, Elsner K et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer 91, 889–899 (2001).
  • Kumar R, Maillard I, Schuster SJ, Alavi A. Utility of fluorodeoxyglucose-PET imaging in the management of patients with Hodgkin’s and non-Hodgkin’s lymphomas. Radiol. Clin. North Am. 42, 1083–1100 (2004).
  • Even-Sapir E, Israel O. Gallium-67 scintigraphy: a cornerstone in functional imaging of lymphoma. Eur. J. Nucl. Med. Mol. Imag. 30, S65–S81 (2003).
  • Moog F, Bangerter M, Diederichs CG et al. Lymphoma: role of FDG-PET in nodal staging. Radiology 203, 795–800 (1997).
  • Moog F, Bangerter M, Diederichs CG et al. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology 206, 475–481 (1998).
  • Moog F, Bangerter M, Kotzerke J et al. 18-F-Fluorodeoxyglucose- positron emission tomography as a new approach to detect lymphomatous bone marrow. J. Clin. Oncol.. 16, 603–609 (1998).
  • Rini JN, Leonidas JC, Tomas MB et al. 18F-FDG PET versus CT for evaluating the spleen during initial staging of lymphoma. J. Nucl. Med. 44, 1072–1074 (2003).
  • Kumar R, Xiu Y, Potenta S et al. 18F-FDG PET for evaluation of the treatment response in patients with gastrointestinal tract lymphomas. J. Nucl. Med. 45, 1796–1803 (2004).
  • Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-d-glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institute. Ann. Oncol. 11, 1273–1279 (2000).
  • Schoder H, Meta J, Yap C et al. effect of whole body (18)F-FDG PET imaging on clinical staging and management of patients with malignant lymphoma. J. Nucl. Med. 42, 1139–1143 (2001).
  • Kostakoglu L, Goldsmith SJ. Fluorine-18 fluorodeoxyglucose positron emission tomography in the staging and follow-up of lymphoma: is it time to shift gears? Eur. J. Nucl. Med. 27, 1564–1578 (2000).
  • Jerusalem G, Beguin Y, Fassotte MF et al. Whole body emission tomography using F-18- fluorodeoxyglucose for post treatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has a higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94, 429–433 (1999).
  • Mikhaeel NG, Timothy AR, Odoherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma, comparison with CT. Leuk Lymphoma. 39, 543–553 (2000).
  • Juweid ME, Wiseman GA, Menda Y, Vose J, Links B, Graham MM. FDG-PET in the prediction of progression free survival at 1-year of patients with aggressive non-Hodgkin’s lymphoma following antracycline based first line chemotherapy. Eur. J. Nucl. Med. 29(Suppl. 1), S264 (2002).
  • Spaepen K, Stroobants S, DuPont P et al. Can positron emission tomography using 18-F- fluorodeoxy glucose ((18)F-FDG PET) after first line treatment distinguish Hodgkin’s disease patients who need additional therapy from others where additional therapy would mean avoidable toxicity? Br. J. Haematol. 115, 272–278 (2001).
  • Mikhaeel NG, Mainwaring P, Nunan T, Timothy AR. Prognostic value of interim and post treatment FDG-PET scanning Hodgkin’s lymphoma. Ann. Oncol. 13, 21–22 (2002).
  • Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma ad Hodgkin’s disease. J. Nucl. Med. 43, 1018–1027 (2002).
  • Canellos GP. Residual mass in lymphoma may not be residual disease. J. Clin. Oncol. 6, 931–933 (1988).
  • Lowe V, Wiseman GA. Assessment of lymphoma therapy using 18F-FDG-PET. J. Nucl. Med. 43, 1028–1030 (2002).
  • Hoskin P. FDG PET in management of lymphoma: a clinical prespective. Eur. J. Nucl. Med. 28, 449–451 (2002).
  • Bar-Shalom R, Yefremov N, Guralnik L et al. Clinical performance of PET-CT in evaluation of cancer. Additional value for diagnostic imaging and patient management. J. Nucl. Med. 44, 1200–1209 (2003).
  • Freudenberg LS, Antoch G, Schutt P et al. FDG PET-CT in re-staging of patients with lymphoma. Eur. J. Nucl. Med. Mol. Imaging 31, 325–329 (2004).
  • Romer W, Schwaiger M. Positron emission tomography in diagnosis and therapy monitoring of patients with lymphoma. Clin. Positron Imaging 1, 101–110 (1998).
  • Klose T, Leidl R, Buchmann I et al. Primary staging of lymphomas: cost-effectiveness of FDG-PET versus computed tomography. Eur. J. Nucl. Med. 27, 1457–1464 (2000).
  • Schiepers C, Filmont JE, Czernin J. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur. J. Nucl. Med. Mol. Imaging 30, S82–S88 (2003).
  • Zijlstra JM, Hoekstra O, Raijmaker PGH et al. 18-FDG positron emission tomography versus Ga-67 scintigraphy as prognostic test during chemotherapy for non-Hodgkin’s lymphoma. Br. J. Haematol. 123, 454–462 (2003).
  • Miller FR, Hussey D, Beeram M, Eng T, McGuff HS, Otto RA. Positron emission tomography in the management of unknown primary head and neck carcinoma. Arch. Otolaryngol. Head Neck Surg. 131, 626–629 (2005).
  • Kau R, Alexiou C, Laubenbacher C et al. Lymph node detection of head and neck squamous cell carcinomas by positron emission tomography with fluorodeoxyglucose F 18 in a routine clinical setting. Arch. Otolaryngol. Head Neck Surg. 125, 1322–1328 (1999).
  • Kresnik E, Mikosch P, Gallowitsch HJ et al. Evaluation of head and neck cancer with 18F-FDG-PET: a comparison with conventional methods. Eur. J. Nucl. Med. 28, 816–821 (2001).
  • Stuckensen T, Kovacs AF, Adams S et al. Staging of the neck in patients with oral cavity squamous cell carcinomas: a prospective comparison of PET, ultrasound, CT and MRI. J. Craniomaxillofac. Surg. 28, 319–324 (2000).
  • Yen TC, Chang JT, Ng SH et al. Staging of untreated squamous cell carcinoma of buccal mucosa with 18F-FDG PET: comparison with head and neck CT/MRI and histopathology. J. Nucl. Med. 46, 775–781 (2005).
  • Adams S, Baum RP, Stuckensen T, Bitter K, Hor G. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur. J. Nucl. Med. 25, 1255–1260 (1998).
  • McGuirt WF, Greven K, Williams D III et al. PET scanning in head and neck oncology: a review. Head Neck. 20, 208–215 (1998).
  • Braams JW, Pruim J, Kole AC et al. Detection of unknown primary head and neck tumors by positron emission tomography. Int. J. Oral Maxillofac. Surg. 26, 112–115 (1997).
  • Fischbein NJ, AAssar OS, Caputo GR et al. Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. AJNR Am. J. Neuroradiol. 19, 1189–1196 (1998).
  • Anzai Y, Carroll WR, Quint DJ et al. Recurrence of head and neck cancer after surgery or irradiation: prospective comparison of 2-deoxy-2-[F-18]fluoro-d-glucose PET and MR imaging diagnoses. Radiology 200, 135–141 (1996).
  • Wong WL, Chevretton EB, McGurk M et al. A prospective study of PET-FDG imaging for the assessment of head and neck squamous cell carcinoma. Clin. Otolaryngol. 22, 209–214 (1997).
  • McGuirt WF, Greven KM, Keyes JW Jr et al. Positron emission tomography in the evaluation of laryngeal carcinoma. Ann. Otol. Rhinol. Laryngol. 104, 274–278 (1995).
  • Kubota K, Yokoyama J, Yamaguchi K et al. FDG-PET delayed imaging for the detection of head and neck cancer recurrence after radio-chemotherapy: comparison with MRI/CT. Eur. J. Nucl. Med. Mol. Imaging 31, 590–595 (2004).
  • Lowe VJ, Dunphy FR, Varvares M et al. Evaluation of chemotherapy response in patients with advanced head and neck cancer using [F-18]fluorodeoxyglucose positron emission tomography. Head Neck 19, 666–674 (1997).
  • Brun E, Kjellen E, Tennvall J et al. FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma. Head Neck 24, 127–135 (2002).
  • Onizawa K, Yoshida H. Evaluation of 67 Ga citrate and 99m Tc bone scintigraphy at initial examination for primary oral squamous cell carcinoma. J. Oral Maxillofac. Surg. 61, 913–917 (2003).
  • Frilling A, Tecklenborg K, Gorges R et al. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well differentiated thyroid carcinoma. Ann. Surg. 234, 804–811 (2001).
  • Yasuda S, Shohtsu A, Ide M et al. Chronic thyroiditis: diffuse uptake of FDG at PET. Radiology 207, 775–778 (1998).
  • Ramos CD, Chisin R, Yeung HW et al. Incidental focal thyroid uptake on FDG positron emission tomographic scans may represent a second primary tumor. Clin. Nucl. Med. 26, 193–197 (2001).
  • Wang W, Macapinlac H, Larson SM et al. [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J. Clin. Endocrinol. Metable. 84, 2291–2302 (1999)
  • Helal BO, Merlet P, Toubert ME et al. Clinical impact of (18)F-FDG-PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J. Nucl. Med. 42, 1464–1469 (2001).
  • Zhuang H, Kumar R, Mandel S, Alavi A. Investigation of thyroid, head, and neck cancers with PET. Radiol. Clin. North Am. 42, 1101–1111 (2004).
  • Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumor detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur. J. Nucl. Med. 28, 64–71 (2001).
  • Schwartz DL, Ford EC, Rajendran J et al. FDG-PET/CT-guided intensity modulated head and neck radiotherapy: a pilot investigation. Head Neck. 27, 478–487 (2005).
  • Kumar R, Alavi A. Clinical applications of fluorodeoxyglucose-positron emission tomography in the management of malignant melanoma. Curr. Opin. Oncol. 17, 154–159 (2005).
  • Havenga K, Cobben DC, Oyen WJ et al. Fluorodeoxyglucose-positron emission tomography and sentinel lymph node biopsy in staging primary cutaneous melanoma. Eur. J. Surg. Oncol. 29, 662–664 (2003).
  • Longo MI, Lazaro P, Bueno C, Carreras JL, Montz R. Fluorodeoxyglucose-positron emission tomography imaging versus sentinel node biopsy in the primary staging of melanoma patients. Dermatol. Surg. 29, 245–248 (2003).
  • Fink AM, Holle-Robatsch S, Herzog N et al. Positron emission tomography is not useful in detecting metastasis in the sentinel lymph node in patients with primary malignant melanoma stage I and II. Melanoma Res. 14, 141–145 (2004).
  • Hafner J, Schmid MH, Kempf W et al. Baseline staging in cutaneous malignant melanoma. Br. J. Dermatol. 150, 677–686 (2004).
  • Liu SH, Chang WC, Kao PF et al. Lymphoscintigraphy and intraoperative gamma probe-directed sentinel lymph node mapping in patients with malignant melanoma. J. Formos. Med. Assoc. 103, 41–46 (2004).
  • Gennari R, Bartolomei M, Testori A et al. Sentinel node localization in primary melanoma: preoperative dynamic lymphoscintigraphy, intraoperative gamma probe, and vital dye guidance. Surgery 127, 19–25 (2000).
  • Jacobs IA, Chevinsky AH, Swayne LC, Magidson JG, Britto EJ, Smith TJ. γ probe-directed lymphatic mapping and sentinel lymphadenectomy in primary melanoma: reliability of the procedure and analysis of failures after long-term follow-up. J. Surg. Oncol. 77, 157–164 (2001).
  • Kumar R, Mavi A, Bural G, Alavi A. Fluorodeoxyglucose-PET in the management of malignant melanoma. Radiol. Clin. North Am. 43, 23–33 (2005).
  • Tyler DS, Onaitis M, Kherani A et al. Positron emission tomography scanning in malignant melanoma: clinical utility in patients with stage III disease. Cancer 89, 1019–1025 (2000).
  • Damian DL, Fulham MJ, Thompson E, Thompson JF. Positron emission tomography in the detection and management of metastatic melanoma. Melanoma Res. 6, 325–329 (1996).
  • Holder WD Jr, White RL Jr, Zuger JH, Easton EJ Jr, Greene FL. Effectiveness of positron emission tomography for the detection of melanoma metastases. Ann. Surg. 227, 764–769 (1998).
  • Klein M, Freedman N, Lotem M et al. Contribution of whole body F-18-FDG-PET and lymphoscintigraphy to the assessment of regional and distant metastases in cutaneous malignant melanoma. A pilot study. Nuklearmedizin 39, 56–61 (2000).
  • Flanagan FL, Dehdashti F, Siegel BA et al. Staging of esophageal cancer with 18F-fluorodeoxyglucose positron emission tomography. AJR Am. J. Roentgenol. 168, 417–424 (1997).
  • Rankin SC, Taylor H, Cook GJ, Mason R. Computed tomography and positron emission tomography in the pre-operative staging of oesophageal carcinoma. Clin. Radiol. 53, 659–665 (1998).
  • Skehan SJ, Brown AL, Thompson M, Young JE, Coates G, Nahmias C. Imaging features of primary and recurrent esophageal cancer at FDG PET. Radiographics 20, 713–723 (2000).
  • Brucher BL, Weber W, Bauer M et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response to therapy evaluation by positron emission tomography. Ann. Surg. 233, 300–309 (2001).
  • Kim K, Park SJ, Kim BT, Lee KS, Shim YM. Evaluation of lymph node metastases in squamous cell carcinoma of the esophagus with positron emission tomography. Ann. Thorac. Surg. 71, 290–294 (2001).
  • Kelly S, Harris KM, Berry E et al. A systematic review of the staging performance of endoscopic ultrasound in gastro-oesophageal carcinoma. Gut 49, 534–539 (2001).
  • Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J. Nucl. Med. 44, 930–942 (2003).
  • Adler LP, Blair HF, Makley JT et al. Noninvasive grading of musculoskeletal tumors using PET. J. Nucl. Med. 32, 1508–1512 (1991).
  • Schulte M, Brecht-Krauss D, Werner M et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J. Nucl. Med. 40, 1637–1643 (1999).
  • Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin. Nucl. Med. 25, 874–881 (2000).
  • Hicks RJ. Nuclear medicine techniques provide unique physiologic characterization of suspected and known soft tissue and bone sarcomas. Acta Orthop. Scand. 273, 25–36 (1997).
  • Bastiaannet E, Groen H, Jager PL. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat. Rev. 30, 83–101 (2004).
  • Eary JF, Conrad EU, Bruckner JD et al. Quantitative [F-18]fluorodeoxyglucose positron emission tomography in pretreatment and grading of sarcoma. Clin. Cancer Res. 4, 1215–1220 (1998).
  • Lucas JD, O’Doherty MJ, Wong JC et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J. Bone Joint Surg. Br. 80, 441–447 (1998).
  • Jadvar H, Conti PS. Diagnostic utility of FDG PET in multiple myeloma. Skeletal Radiol. 31, 690–694 (2002).
  • Schirrmeister H, Bommer M, Buck AK et al. Initial results in the assessment of multiple myeloma using 18F-FDG PET. Eur. J. Nucl. Med. Mol. Imaging 29, 361–366 (2002).
  • Durie BG, Waxman AD, D’Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J. Nucl. Med. 43, 1457–1463 (2002).
  • Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am. J. Roentgenol. 184, 1199–1204 (2005).
  • Kumar R, Alavi A. PET imaging in gynecologic malignancies. Radiol. Clin. North Am. 42, 1155–1167 (2004).
  • Zimny M, Siggelkow W, Schroder W et al. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in the diagnosis of recurrent ovarian cancer. Gynecol. Oncol. 83, 310–315 (2001).
  • Karlan BY, Hawkins R, Hoh C et al. Whole-body positron emission tomography with 2-[18F]-fluoro-2-deoxy-d-glucose can detect recurrent ovarian carcinoma. Gynecol. Oncol. 51, 175–181 (1993).
  • Hubner KF, McDonald TW, Niethammer JG, Smith GT, Gould HR, Buonocore E. Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol. Oncol. 51, 197–204 (1993).
  • Smith GT, Hubner KF, McDonald T. Avoiding second-look surgery and reducing costs in managing patients with ovarian cancer by applying F-18-FDG PET. Clin. Positron Imaging 1, 263 (1998).
  • Yoshida Y, Kurokawa T, Kawahara K et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. Am. J. Roentgenol. 182, 227–233 (2004).
  • Pannu HK, Bristow RE, Cohade C et al. PET-CT in recurrent ovarian cancer: initial observations. Radiographics 24, 209–223 (2004).
  • Bristow RE, del Carmen MG, Pannu HK et al. Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery using combined PET/CT. Gynecol. Oncol. 90, 519–528 (2003).
  • Vesselle H, Grierson J, Muzi M et al. In vivo validation of 3-deoxy-3-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin. Cancer Res. 8, 3315–3323 (2002).
  • Moelher M, Dimitrakopoulou-Strauss A, Gutzler F et al. 18F-fluorouracil positron emission tomography and the prognosis of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83, 245–253 (1998).
  • Dimitrakopoulou-Strauss A, Strauss LG, Schlag P et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J. Nucl. Med. 39, 1197–1202 (1998).
  • Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 55, 1233–1238 (2003).
  • Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol. Clin. North Am. 43, 169–187 (2005).
  • Seimbille Y, Rousseau J, Benard F et al. 18F-labeled difluoroestrodiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaeceuticals. Steroids 67, 765–775 (2002).
  • Kiesewetter DO, Kilbourn MR, Landvatter SW et al. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissue of immature rats. J. Nucl. Med. 25, 1212–1221 (1984).
  • Ilias I, Yu J, Carrasquillo JA et al. Superiority of 6-[18F]fluorodopamine positron emission tomography vs. [131I]MIBG scintigraphy in the localization of metastatic pheochromocytoma. J. Clin. Endocrinol. Metab. 88, 4083–4087 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.