117
Views
30
CrossRef citations to date
0
Altmetric
Special Report

Peripheral γδ T-lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma

, &
Pages 973-986 | Published online: 10 Jan 2014

References

  • Godley PA, Taylor M. Renal cell carcinoma. Curr. Opin. Oncol. 13(3), 199–203 (2001).
  • Dhote R, Pellicer-Coeuret M, Thiounn N, Debre B, Vidal-Trecan G. Risk factors for adult renal cell carcinoma: a systematic review and implications for prevention. Br. J. Urol. Int. 86(1), 20–27 (2000).
  • Marshall FF, Lymphadenectomy for renal cell carcinoma. Br. J. Urol. Int. 95(Suppl. 2), 34 (2005).
  • Storkel S, Eble JN, Adlakha K et al. Classification of renal cell carcinoma: Workgroup No. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80(5), 987–989 (1997).
  • Pavlovich CP, Schmidt LS, Phillips JL. The genetic basis of renal cell carcinoma. Urol. Clin. North Am. 30(3), 437–454 (2003).
  • Schmidt L, Junker K, Nakaigawa N et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18(14), 2343–2350 (1999).
  • Linehan WM, Vasselli J, Srinivasan R et al. Genetic basis of cancer of the kidney: disease-specific approaches to therapy. Clin. Cancer Res. 10(18 Pt 2), S6282–S6289 (2004).
  • Motzer RJ, Russo. Systemic therapy for renal cell carcinoma. J. Urol. 163(2), 408–417 (2000).
  • Fairlamb DJ. Spontaneous regression of metastases of renal cancer: a report of two cases including the first recorded regression following irradiation of a dominant metastasis and review of the world literature. Cancer 47(8), 2102–2106 (1981).
  • Balch CM, Riley LB, Bae YJ et al. Patterns of human tumor-infiltrating lymphocytes in 120 human cancers. Arch. Surg. 125(2), 200–205 (1990).
  • Muss HB et al. Recombinant alfa interferon in renal cell carcinoma: a randomized trial of two routes of administration. J. Clin. Oncol. 5(2), 286–291 (1987).
  • Elhilali MM et al. Placebo-associated remissions in a multicentre, randomized, double-blind trial of interferon γ-1b for the treatment of metastatic renal cell carcinoma. Can. Urol. Oncol. Grou. Br. J. Urol. Int. 86(6), 613–618 (2000).
  • Fyfe G et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13(3), 688–696 (1995).
  • Negrier S et al. Interleukin-2 with or without LAK cells in metastatic renal cell carcinoma: a report of a European multicentre study. Eur. J. Cancer Clin. Oncol. 25(Suppl. 3), S21–S28 (1989).
  • Escudier B et al. High-dose interleukin-2 two days a week for metastatic renal cell carcinoma: a FNCLCC multicenter study. J. Immunother. Emphasis Tumor Immunol. 16(4), 306–312 (1994).
  • Negrier S et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d’Immunotherapie. N. Engl. J. Med. 338(18), 1272–1278 (1998).
  • McDermott DF et al. Randomized Phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23(1), 133–141 (2005).
  • Law TM et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76(5), 824–832 (1995).
  • Figlin RA et al. Multicenter, randomized, Phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J. Clin. Oncol. 17(8), 2521–2529 (1999).
  • Escudier B et al. Immunotherapy with interleukin-2 (IL2) and lymphokine-activated natural killer cells: improvement of clinical responses in metastatic renal cell carcinoma patients previously treated with IL2. Eur. J. Cancer 30A(8), 1078–1083 (1994).
  • Panelli MC et al. Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J. Immunother. 23(4), 487–498 (2000).
  • Kugler A, Stuhler G, Walden P et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med. 6(3), 332–336 (2000).
  • Childs RW, Igarashi T. The identification of renal cell carcinoma as a target for allogeneic based cancer immunotherapy. Exp. Nephrol. 10(3), 227–234 (2002).
  • Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4(1), 71–78 (2004).
  • Rosenberg SA, Yang JC, Restifo N. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10(9), 909–915 (2004).
  • Gerber D, Boucontet L, Pereira P. Early expression of a functional TCRbeta chain inhibits TCRγ gene rearrangements without altering the frequency of TCRγδ lineage cells. J. Immunol. 173(4), 2516–2523 (2004).
  • Silva-Santos B, Pennington DJ, Hayday AC. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T-cell progenitors. Science 307(5711), 925–928 (2005).
  • Hein WR, Mackay CR. Prominence of γ δ T-cells in the ruminant immune system. Immunol. Today 12(1), 30–34 (1991).
  • Hayday AC. [γ][δ] cells: a right time and a right place for a conserved third way of protection. Ann. Rev. Immunol. 18, 975–1026 (2000).
  • Parker CM, Groh V, Band H et al. Evidence for extrathymic changes in the T-cell receptor γ/δ repertoire. J. Exp. Med. 171(5), 1597–1612 (1990).
  • Ismaili J et al. Human γδ T-cells induce dendritic cell maturation. Clin. Immunol. 103(3Pt 1), 296–302 (2002).
  • Ferrick DA et al. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γ δ T-cells in vivo. Nature 373(6511), 255–257 (1995).
  • Wang L et al. Human V γ 2V δ 2 T-cells produce IFN-γ and TNF-α with an on/off/on cycling pattern in response to live bacterial products. J. Immunol. 167(11), 6195–6201 (2001).
  • Sicard H et al. In vivo Immunomanipulation of V{γ}9V{δ}2 T-cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J. Immunol. 175(8), 5471–5480 (2005).
  • Glatzel A et al. Patterns of chemokine receptor expression on peripheral blood γδ T-lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9γδ T-cells. J. Immunol. 168(10), 4920–4929 (2002).
  • Dagna L, Iellem A, Biswas P et al. Skewing of cytotoxic activity and chemokine production, but not of chemokine receptor expression, in human type-1/-2 γδ T-lymphocytes. Eur. J. Immunol. 32(10), 2934–2943 (2002).
  • Brandes M, Willimann K, Moser B. Professional antigen-presentation function by human γδ T-cells. Science 309(5732), 264–268 (2005).
  • Davodeau F, Peyrat MA, Hallet MM et al. Close correlation between Daudi and mycobacterial antigen recognition by human γ δ T-cells and expression of V9JPC1 γ/V2DJC δ-encoded T-cell receptors. J. Immunol. 151(3), 1214–1223 (1993).
  • Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T-cells. Science 279(5357), 1737–1740 (1998).
  • Spada FM, Grant EP, Peters PJ et al. Self-recognition of CD1 by γ/δ T-cells: implications for innate immunity. J. Exp. Med. 191(6), 937–948 (2000).
  • Dechanet J, Merville P, Lim A et al. Implication of γδ T-cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103(10), 1437–1449 (1999).
  • Constant P, Davodeau F, Peyrat MA et al. Stimulation of human γδ T-cells by nonpeptidic mycobacterial ligands. Science 264(5156), 267–270 (1994).
  • Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR. Natural and synthetic nonpeptide antigens recognized by human γδ T-cells. Nature 375(6527), 155–158 (1995).
  • Behr C, Poupot R, Peyrat MA et al. Plasmodium falciparum stimuli for human γδ T-cells are related to phosphorylated antigens of mycobacteria. Infect. Immun. 64(8), 2892–2896 (1996).
  • Belmant C, Espinosa E, Halary F et al. A chemical basis for selective recognition of nonpeptide antigens by human δ T-cells. Faseb J. 14(12), 1669–1670 (2000).
  • Bukowski JF, Morita CT, Brenner MB. Human γδ T-cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11(1), 57–65 (1999).
  • Kunzmann V, Bauer E, Wilhelm M. Gamma/δ T-cell stimulation by pamidronate. N. Engl. J. Med. 340(9), 737–738 (1999).
  • Kunzmann V, Bauer E, Feurle J et al. Stimulation of γδ T-cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2), 384–392 (2000).
  • Jomaa H, Feurle J, Luhs K et al. Vγ9/Vδ2 T-cell activation induced by bacterial low molecular mass compounds depends on the 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid biosynthesis. FEMS Immunol. Med. Microbiol. 25(4), 371–378 (1999).
  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295(Pt 2), 517–524 (1993).
  • Feurle J, Espinosa E, Eckstein S et al. Escherichia coli produces phosphoantigens activating human γδ T-cells. J. Biol. Chem. 277(1), 148–154 (2002).
  • Hintz M, Reichenberg A, Altincicek B et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T-cells in Escherichia coli. FEBS Lett. 509(2), 317–322 (2001).
  • Kato Y, Y. Tanaka, Miyagawa F, Yamashita S, Minato N. Targeting of tumor cells for human γδ T-cells by nonpeptide antigens. J. Immunol. 167(9), 5092–5098 (2001).
  • Gober HJ, Kistowska M, Angman L et al. Human T-cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197(2), 163–168 (2003).
  • Thompson K, Rojas-Navea J, Rogers MJ. Alkylamines cause V{gamma}9V{delta}2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood (2005) (In Press).
  • Espinosa E, Belmant C, Pont F et al. Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human γ δ T-cells. J. Biol. Chem. 276(21), 18337–18344 (2001).
  • Bukowski JF, Morita CT, Tanaka Y et al. Vγ2Vδ2 TCR-dependent recognition of nonpeptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154(3), 998–1006 (1995).
  • Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN. Structure of a human γδ T-cell antigen receptor. Nature 411(6839), 820–824 (2001).
  • Scotet E, Martinez LO, Grant E et al. Tumor recognition following Vγ9Vδ2 T-cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22(1), 71–80 (2005).
  • Bonneville M, Fournie JJ. Sensing cell stress and transformation through Vγ9Vδ2 T-cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect. 7(3), 503–509 (2005).
  • Fisch P, Malkovsky M, Kovats S et al. Recognition by human Vγ9/Vδ2 T-cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250(4985), 1269–1273 (1990).
  • Bank I, Book M, Huszar M et al. Vδ2+γδ T-lymphocytes are cytotoxic to the MCF 7 breast carcinoma cell line and can be detected among the T-cells that infiltrate breast tumors. Clin. Immunol. Immunopathol. 67(1), 17–24 (1993).
  • Schilbach KE, Geiselhart A, Wessels JT, Niethammer D, Handgretinger R. Human γδ T-lymphocytes exert natural and IL-2-induced cytotoxicity to neuroblastoma cells. J. Immunother. 23(5), 536–548 (2000).
  • Wang MH, Chen YQ, Gercken J et al. Specific activation of human peripheral blood γ/δ + lymphocytes by sonicated antigens of Mycobacterium tuberculosis: role in vitro in killing human bladder carcinoma cell lines. Scand. J. Immunol. 38(3), 239–246 (1993).
  • Ferrarini M, Heltai S, Pupa SM, Mernard S, Zocchi R. Killing of laminin receptor-positive human lung cancers by tumor infiltrating lymphocytes bearing γδ(+) t-cell receptors. J. Natl Cancer Inst. 88(7), 436–441 (1996).
  • Fujimiya Y, Suzuki Y, Katakura R et al. In vitro interleukin-12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(-) γδ T-cells from glioblastoma patients. Clin. Cancer Res. 3(4), 633–643 (1997).
  • Yamaguchi T, Fujimiya Y, Suzuki Y, Katakura R, Ebina T. A simple method for the propagation and purification of γδ T-cells from the peripheral blood of glioblastoma patients using solid-phase antiCD3 antibody and soluble IL-2. J. Immunol. Methods 205(1), 19–28 (1997).
  • Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD. Ex vivo expanded human Vγ9Vδ2+ γδ-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J. Urol. 173(5), 1552–1556 (2005).
  • Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T. Gamma/δ T-cells provide innate immunity against renal cell carcinoma. Cancer Immunol. Immunother. 50(3), 115–124 (2001).
  • Viey E, Fromont G, Escudier B et al. Phosphostim-activated γδ T-cells kill autologous metastatic renal cell carcinoma. J. Immunol. 174(3), 1338–1347 (2005).
  • Corvaisier M, Moreau-Aubry A, Diez E et al. V{γ}9V{δ}2 T-cell response to colon carcinoma cells. J. Immunol. 175(8), 5481–5488 (2005).
  • Malkovska V, Cigel FK, Armstrong N, Storer BE, Hong R. Antilymphoma activity of human γ δ T-cells in mice with severe combined immune deficiency. Cancer Res. 52(20), 5610–5616 (1992).
  • Zheng BJ, Chan KW, Im S et al. Antitumor effects of human peripheral γδ T-cells in a mouse tumor model. Int. J. Cancer 92(3), 421–425 (2001).
  • Kabelitz D, Wesch D, Pitters E, Zoller M. Characterization of tumor reactivity of human Vγ9Vδ2γδ T-cells in vitro and in SCID mice in vivo. J. Immunol. 173(11), 6767–6776 (2004).
  • Wilhelm M, Kunzmann V, Eckstein S et al. γδ T-cells for immune therapy of patients with lymphoid malignancies. Blood 102(1), 200–206 (2003).
  • Dieli F, Gebbia N, Poccia F et al. Induction of γδ T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102(6), 2310–2311 (2003).
  • Laplace C, Soraya S, Tenaud I et al. Process to manufacture specific Vγ9Vδ2 T-lymphocytes cell therapeutic product from peripheral blood mononuclear cells (PBMC) using bromohydrin pyrophosphate (BRHPP) and interleukin 2 (IL-2). Proc. Am. Assoc. Cancer Res. 45, 5445 (2004) (Abstract).
  • Bennouna J, Laplace C, Chidiac J et al. Determination of in vitro sensitivity of Vγ9Vδ2 T lymphocytes to a synthetic antigen (bromohydrin pyrophosphate, BrHPP) in patients with metastatic renal cell carcinoma (MRCC) and correlation with a large scale ex vivo expansion. Proc. Am. Assoc. Cancer Res. 45, 4710 (2004) (Abstract).
  • Bennouna J, Mediom J, Rolland F et al. Phase I clinical trial of BromoHydrin PyroPhosphate, BrHPP (Phosphostim), a Vγ9Vδ2 T lymphocytes agonist in combination with low dose interleukin-2 in patients with solild tumors. Am. Soc. Clin. Oncol. (2005) (Abstract 2536).
  • Gattinoni L, Klebanoff CA, Palmer DC et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T-cells. J. Clin. Invest. 115(6), 1616–1626 (2005).
  • Dudley ME, Wunderlich JR, Robbins PF et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002).
  • Plate JM, Plate AE, Shott S, Bograd S, Harris JE. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol. Immunother. 54(9), 915–925 (2005).
  • Coleman S, Clayton A, Mason MD et al. Recovery of CD8+ T-cell function during systemic chemotherapy in advanced ovarian cancer. Cancer Res. 65(15), 7000–7006 (2005).
  • Mancuso A, Sternberg CN. New treatments for metastatic kidney cancer. Can. J. Urol. 12(Suppl. 1), 66–70 (Discussion 105) (2005).
  • Escudier B, Szczylik C, Eisen T et al. Randomized Phase III trial of the Raf kinase and VEGFR inhibitor sorafenib (BAY 43-9006) in patients with advanced renal cell carcinoma (RCC). Am. Soc. Clin. Oncol. 23, 4510 (2005) (Abstract).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.