125
Views
17
CrossRef citations to date
0
Altmetric
Review

Significance of micrometastasis in bone marrow and blood of operable breast cancer patients: research tool or clinical application?

, , &
Pages 1463-1472 | Published online: 10 Jan 2014

References

  • Fisher B, Anderson S, Bryant J et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med.347(16), 1233–1241 (2002).
  • Mansi JL, Gogas H, Bliss JM et al. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet354(9174), 197–202 (1999).
  • Mirza AN, Mirza NQ, Vlastos G et al. Prognostic factors in node-negative breast cancer: a review of studies with sample size more than 200 and follow-up more than 5 years. Ann. Surg.235(1), 10–26 (2002).
  • Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat. Rev. Cancer4(6), 448–456 (2004).
  • Pantel K, Woelfle U. Micrometastasis in breast cancer and other solid tumors. J. Biol. Regul. Homeost. Agents18(2), 120–125 (2004).
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet365(9472), 1687–1717 (2005).
  • Braun S, Vogl FD, Naume B et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med.353(8), 793–802 (2005).
  • Diel IJ. Bone marrow staging for breast cancer: is it better than axillary node dissection? Semin. Oncol.28(3), 236–244 (2001).
  • Pantel K, Cote RJ, Fodstad O. Detection and clinical importance of micrometastatic disease. J. Natl Cancer Inst.91(13), 1113–1124 (1999).
  • Osborne MP, Rosen PP. Detection and management of bone marrow micrometastases in breast cancer. Oncology (Williston Park)8(8), 25–31; discussion 35–26, 39–42 (1994).
  • Gebauer G, Fehm T, Merkle E et al. Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J. Clin. Oncol.19(16), 3669–3674 (2001).
  • Solomayer EF, Diel IJ, Salanti G et al. Time independence of the prognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients. Clin. Cancer Res.7(12), 4102–4108 (2001).
  • Benoy IH, Salgado R, Elst H et al. Relative microvessel area of the primary tumour, and not lymph node status, predicts the presence of bone marrow micrometastases detected by reverse transcriptase polymerase chain reaction in patients with clinically non-metastatic breast cancer. Breast Cancer Res.7(2), R210–R219 (2005).
  • Hemsen A, Riethdorf L, Brunner N et al. Comparative evaluation of urokinase-type plasminogen activator receptor expression in primary breast carcinomas and on metastatic tumor cells. Int. J. Cancer107(6), 903–909 (2003).
  • Landys K, Persson S, Kovarik J et al. Prognostic value of bone marrow biopsy in operable breast cancer patients at the time of initial diagnosis: results of a 20-year median follow-up. Breast Cancer Res. Treat.49(1), 27–33 (1998).
  • Braun S, Schlimok G, Heumos I et al. ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I–III breast cancer patients. Cancer Res.61(5), 1890–1895 (2001).
  • Choesmel V, Pierga JY, Nos C et al. Enrichment methods to detect bone marrow micrometastases in breast carcinoma patients: clinical relevance. Breast Cancer Res.6(5), R556–R570 (2004).
  • Braun S, Pantel K, Muller P et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med.342(8), 525–533 (2000).
  • Gerber B, Krause A, Muller H et al. Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors. J. Clin. Oncol.19(4), 960–971 (2001).
  • Braun S, Cevatli BS, Assemi C et al. Comparative analysis of micrometastasis to the bone marrow and lymph nodes of node-negative breast cancer patients receiving no adjuvant therapy. J. Clin. Oncol.19(5), 1468–1475 (2001).
  • Wiedswang G, Borgen E, Karesen R et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol.21(18), 3469–3478 (2003).
  • Braun S, Naume B. Circulating and disseminated tumor cells. J. Clin. Oncol.23(8), 1623–1626 (2005).
  • Racila E, Euhus D, Weiss AJ et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl Acad. Sci. USA95(8), 4589–4594 (1998).
  • Mehes G, Witt A, Kubista E et al. Circulating breast cancer cells are frequently apoptotic. Am. J. Pathol.159(1), 17–20 (2001).
  • Bauer KD, de la Torre-Bueno J, Diel IJ et al. Reliable and sensitive analysis of occult bone marrow metastases using automated cellular imaging. Clin. Cancer Res.6(9), 3552–3559 (2000).
  • Kraeft SK, Ladanyi A, Galiger K et al. Reliable and sensitive identification of occult tumor cells using the improved rare event imaging system. Clin. Cancer Res.10(9), 3020–3028 (2004).
  • Witzig TE, Bossy B, Kimlinger T et al. Detection of circulating cytokeratin-positive cells in the blood of breast cancer patients using immunomagnetic enrichment and digital microscopy. Clin. Cancer Res.8(5), 1085–1091 (2002).
  • Benoy IH, Elst H, Philips M et al. Real-time RTPCR detection of disseminated tumour cells in bone marrow has superior prognostic significance in comparison with circulating tumour cells in patients with breast cancer. Br. J. Cancer94(5), 672–680 (2006).
  • Slade MJ, Singh A, Smith BM et al. Persistence of bone marrow micrometastases in patients receiving adjuvant therapy for breast cancer: results at 4 years. Int. J. Cancer114(1), 94–100 (2005).
  • Masuda TA, Kataoka A, Ohno S et al. Detection of occult cancer cells in peripheral blood and bone marrow by quantitative RTPCR assay for cytokeratin-7 in breast cancer patients. Int. J. Oncol.26(3), 721–730 (2005).
  • Nogi H, Takeyama H, Uchida K et al. Detection of MUC1 and keratin 19 mRNAs in the bone marrow by quantitative RTPCR predicts the risk of distant metastasis in breast cancer patients. Breast Cancer10(1), 74–81 (2003).
  • Jung YS, Lee KJ, Kim HJ et al. Clinical significance of bone marrow micrometastasis detected by nested rtPCR for keratin-19 in breast cancer patients. Jpn. J. Clin. Oncol.33(4), 167–172 (2003).
  • Kruger W, Krzizanowski C, Holweg M et al. Reverse transcriptase/polymerase chain reaction detection of cytokeratin-19 mRNA in bone marrow and blood of breast cancer patients. J. Cancer Res. Clin. Oncol.122(11), 679–686 (1996).
  • Gerhard M, Juhl H, Kalthoff H et al. Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J. Clin. Oncol.12(4), 725–729 (1994).
  • Schindlbeck C, Jeschke U, Schulze S et al. Characterisation of disseminated tumor cells in the bone marrow of breast cancer patients by the Thomsen-Friedenreich tumor antigen. Histochem. Cell Biol.123(6), 631–637 (2005).
  • Ferrucci PF, Rabascio C, Gigli F et al. A new comprehensive gene expression panel to study tumor micrometastasis in patients with high-risk breast cancer. Int. J. Oncol.30(4), 955–962 (2007).
  • Diel IJ, Kaufmann M, Costa SD et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J. Natl Cancer Inst.88(22), 1652–1658 (1996).
  • Freire T, Berois N, Sonora C et al. UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyl transferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells. Int. J. Cancer119(6), 1383–1388 (2006).
  • Berois N, Varangot M, Sonora C et al. Detection of bone marrow-disseminated breast cancer cells using an RTPCR assay of MUC5B mRNA. Int. J. Cancer103(4), 550–555 (2003).
  • Zippelius A, Kufer P, Honold G et al. Limitations of reverse-transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow. J. Clin. Oncol.15(7), 2701–2708 (1997).
  • Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med.351(8), 781–791 (2004).
  • Budd GT, Cristofanilli M, Ellis MJ et al. Circulating tumor cells versus imaging – predicting overall survival in metastatic breast cancer. Clin. Cancer Res.12(21), 6403–6409 (2006).
  • Hayes DF, Cristofanilli M, Budd GT et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res.12(14 Pt 1), 4218–4224 (2006).
  • Ross AA, Cooper BW, Lazarus HM et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood82(9), 2605–2610 (1993).
  • Rosenberg R, Gertler R, Friederichs J et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry49(4), 150–158 (2002).
  • Ring A, Smith IE, Dowsett M. Circulating tumour cells in breast cancer. Lancet Oncol.5(2), 79–88 (2004).
  • Benoy IH, Elst H, Philips M et al. Prognostic significance of disseminated tumor cells as detected by quantitative real-time reverse-transcriptase polymerase chain reaction in patients with breast cancer. Clin. Breast Cancer7(2), 146–152 (2006).
  • Gebauer G, Fehm T, Merkle E et al. Micrometastases in axillary lymph nodes and bone marrow of lymph node-negative breast cancer patients – prognostic relevance after 10 years. Anticancer Res.23(5B), 4319–4324 (2003).
  • Weinschenker P, Soares HP, Clark O et al. Immunocytochemical detection of epithelial cells in the bone marrow of primary breast cancer patients: a meta-analysis. Breast Cancer Res. Treat.87(3), 215–224 (2004).
  • Wiedswang G, Borgen E, Karesen R et al. Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome. Clin. Cancer Res.10(16), 5342–5348 (2004).
  • Janni W, Rack B, Schindlbeck C et al. The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer103(5), 884–891 (2005).
  • Yie SM, Luo B, Ye NY et al. Detection of Survivin-expressing circulating cancer cells in the peripheral blood of breast cancer patients by a RTPCR ELISA. Clin. Exp. Metastasis23(5–6), 279–289 (2006).
  • Wulfing P, Borchard J, Buerger H et al. HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients. Clin. Cancer Res.12(6), 1715–1720 (2006).
  • Zach O, Kasparu H, Wagner H et al. Prognostic value of tumour cell detection in peripheral blood of breast cancer patients. Acta Med. Austriaca Suppl.59, 32–34 (2002).
  • Stathopoulou A, Vlachonikolis I, Mavroudis D et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J. Clin. Oncol.20(16), 3404–3412 (2002).
  • Gaforio JJ, Serrano MJ, Sanchez-Rovira P et al. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int. J. Cancer107(6), 984–990 (2003).
  • Muller V, Stahmann N, Riethdorf S et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin. Cancer Res.11(10), 3678–3685 (2005).
  • Stathopoulos EN, Sanidas E, Kafousi M et al. Detection of CK-19 mRNA-positive cells in the peripheral blood of breast cancer patients with histologically and immunohistochemically negative axillary lymph nodes. Ann. Oncol.16(2), 240–246 (2005).
  • Pierga JY, Bonneton C, Vincent-Salomon A et al. Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin. Cancer Res.10(4), 1392–1400 (2004).
  • Wiedswang G, Borgen E, Schirmer C et al. Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int. J. Cancer118(8), 2013–2019 (2006).
  • Zach O, Lutz D. Tumor cell detection in peripheral blood and bone marrow. Curr. Opin. Oncol.18(1), 48–56 (2006).
  • Gradilone A, Gazzaniga P, Silvestri I et al. Detection of CK19, CK20 and EGFR mRNAs in peripheral blood of carcinoma patients: correlation with clinical stage of disease. Oncol. Rep.10(1), 217–222 (2003).
  • Lobodasch K, Frohlich F, Rengsberger M et al. Quantification of circulating tumour cells for the monitoring of adjuvant therapy in breast cancer: an increase in cell number at completion of therapy is a predictor of early relapse. Breast16(2), 211–218 (2007).
  • Xenidis N, Vlachonikolis I, Mavroudis D et al. Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann. Oncol.14(6), 849–855 (2003).
  • Solakoglu O, Maierhofer C, Lahr G et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA99(4), 2246–2251 (2002).
  • Klein CA, Blankenstein TJ, Schmidt-Kittler O et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet360(9334), 683–689 (2002).
  • Klein CA, Seidl S, Petat-Dutter K et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat. Biotechnol.20(4), 387–392 (2002).
  • Schmidt-Kittler O, Ragg T, Daskalakis A et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA100(13), 7737–7742 (2003).
  • Gangnus R, Langer S, Breit E et al. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin. Cancer Res.10(10), 3457–3464 (2004).
  • Albertson DG, Collins C, McCormick F et al. Chromosome aberrations in solid tumors. Nat. Genet.34(4), 369–376 (2003).
  • Lacroix M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer13(4), 1033–1067 (2006).
  • Fehm T, Sagalowsky A, Clifford E et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin. Cancer Res.8(7), 2073–2084 (2002).
  • Meng S, Tripathy D, Frenkel EP et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res.10(24), 8152–8162 (2004).
  • Meng S, Tripathy D, Shete S et al. uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc. Natl Acad. Sci. USA103(46), 17361–17365 (2006).
  • Meng S, Tripathy D, Shete S et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc. Natl Acad. Sci. USA101(25), 9393–9398 (2004).
  • Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer2(8), 563–572 (2002).
  • Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res.51(Suppl. 18), S5054–S5059 (1991).
  • Braun S, Pantel K. Biological characteristics of micrometastatic cancer cells in bone marrow. Cancer Metastasis Rev.18(1), 75–90 (1999).
  • Braun S, Kentenich C, Janni W et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol.18(1), 80–86 (2000).
  • Loo WT, Fong JH, Zhu L et al. The value of bone marrow aspirates culture for the detection of bone marrow micrometastasis in breast cancer. Biomed. Pharmacother59(Suppl. 2), S384–S386 (2005).
  • Pierga JY, Bonneton C, Magdelenat H et al. Clinical significance of proliferative potential of occult metastatic cells in bone marrow of patients with breast cancer. Br. J. Cancer89(3), 539–545 (2003).
  • Kraus J, Pantel K, Pinkel D et al. High-resolution genomic profiling of occult micrometastatic tumor cells. Genes Chromosomes Cancer36(2), 159–166 (2003).
  • Putz E, Witter K, Offner S et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res.59(1), 241–248 (1999).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003).
  • Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98(24), 1777–1785 (2006).
  • Shackleton M, Vaillant F, Simpson KJ et al. Generation of a functional mammary gland from a single stem cell. Nature439(7072), 84–88 (2006).
  • Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res.7(3), 86–95 (2005).
  • Li Y, Rosen JM. Stem/progenitor cells in mouse mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia10(1), 17–24 (2005).
  • Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu. Rev. Med.58, 267–284 (2007).
  • Liu R, Wang X, Chen GY et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356(3), 217–26 (2007).
  • Balic M, Lin H, Young L et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res.12(19), 5615–5621 (2006).
  • Korah R, Boots M, Wieder R. Integrin α5β1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res.64(13), 4514–4522 (2004).
  • Trocciola S, Hoda, S, Osborne et al. Do bone marrow micrometastases correlate with sentinel lymph node metastases in breast cancer patients? J. Am. Coll. Surg.200(5), 720–725 (2005).
  • Becker S, Becker-Pergola G, Fehm T, Emig R, Wallwiener D, Solomayer E. Image analysis systems for the detection of disseminated breast cancer cells on bone-marrow cytospins. J. Clin. Lab. Anal.19(3), 115–119 (2005).
  • Yu J, Brennan M, Christos P, Osborne M, Hoda S, Simmons R. Bone marrow micrometastases and adjuvant treatment of breast cancer. Breast J.10(3), 181–185 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.