142
Views
63
CrossRef citations to date
0
Altmetric
Review

Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients

, &
Pages 675-687 | Published online: 10 Jan 2014

References

  • American Cancer Society Cancer Facts & Figures 2007. American Cancer Society, Inc., Atlanta, Georgia, USA, 1–52 (2007).
  • Ohgaki H, Dessen P, Jourde B et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res.64(19), 6892–6899 (2004).
  • Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet359(9311), 1011–1018 (2002).
  • Council MR. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytoma: a Medical Research Council Trial. J. Clin. Oncol.19(2), 509–518 (2001).
  • Denny BJ, Wheelhouse RT, Stevens MF, Tsang LL, Slack JA. NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry33(31), 9045–9051 (1994).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352(10), 987–996 (2005).
  • Wong ET, Hess KR, Gleason MJ et al. outcomes and prognostic factors in recurrent glioma patients enrolled onto Phase II clinical trials. J. Clin. Oncol.17(8), 2572–2578 (1999).
  • Yung WK, Prados MD, Yaya-Tur R et al. Multicenter Phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J. Clin. Oncol.17(9), 2762–2771 (1999).
  • Yung WK, Albright RE, Olson J et al. A Phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br. J. Cancer83(5), 588–593 (2000).
  • Imperato JP, Paleologos NA, Vick NA. Effects of treatment on long-term survivors with malignant astrocytomas. Ann. Neurol.28(6), 818–822 (1990).
  • Vick NA, Paleologos NA. External beam radiotherapy: hard facts and painful realities. J. Neurooncol.24(1), 93–95 (1995).
  • Curran WJ Jr, Scott CB, Horton J et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J. Natl. Cancer Inst.85(9), 704–710 (1993).
  • Neuwelt EA. Mechanisms of disease: the blood–brain barrier. Neurosurgery54(1), 131–140; discussion 141–142 (2004).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706), 58–62 (2005).
  • Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat. Rev. Drug Disc.3, 430–446 (2004).
  • Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology30(9), 907–911 (1980).
  • Gaspar LE, Fisher BJ, Macdonald DR et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment. Int. J. Radiat. Oncol. Biol. Phys.24(1), 55–57 (1992).
  • Enam SA, Rosenblum ML, Edvardsen K. Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectin-positive mesenchymal cell processes. Neurosurgery42(3), 599–607; discussion 607–608 (1998).
  • Westphal M, Hilt DC, Bortey E et al. A Phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-oncology5(2), 79–88 (2003).
  • Brem H, Piantadosi S, Burger PC et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet345, 1008 (1995).
  • Kunwar S, Chang SM, Prados MD et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg. Focus20(4), E15 (2006).
  • Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-α and a mutated form of the pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol.65(1), 27–35 (2003).
  • Sampson JH, Reardon DA, Friedman AH et al. Sustained radiographic and clinical response in patient with bifrontal recurrent glioblastoma multiforme with intracerebral infusion of the recombinant targeted toxin TP-38: case study. Neuro-oncology7(1), 90–96 (2005).
  • Tatter SB, Shaw EG, Rosenblum ML et al. An inflatable balloon catheter and liquid 125I radiation source (Gliasite radiation therapy system) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J. Neurosurg.99(2), 297–303 (2003).
  • Chan TA, Weingart JD, Parisi M et al. Treatment of recurrent glioblastoma multiforme with Gliasite brachytherapy. Int. J. Radiat. Oncol. Biol. Phys.62(4), 1133–1139 (2005).
  • Gabayan AJ, Green SB, Sanan A et al. GliaSite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery58(4), 701–709; discussion 701–709 (2006).
  • Rogers LR, Rock JP, Sills AK et al. Results of a Phase II trial of the Gliasite radiation therapy system for the treatment of newly diagnosed, resected single brain metastases. J. Neurosurg.105(3), 375–384 (2006).
  • O’Mahony D, Bishop MR. Monoclonal antibody therapy. Front. Biosci.11, 1620–1635 (2006).
  • Hale G. Therapeutic antibodies – delivering the promise? Adv. Drug Deliv. Rev.58(5–6), 633–639 (2006).
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23(9), 1147–1157 (2005).
  • Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat. Rev. Cancer6(9), 714–727 (2006).
  • Quang TS, Brady LW. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int. J. Radiat. Oncol. Biol. Phys.58(3), 972–975 (2004).
  • Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas. J. Neurooncol.65(1), 3–13 (2003).
  • Hopkins K, Chandler C, Eatough J, Moss T, Kemshead JT. Direct injection of 90Y moAbs into glioma tumor resection cavities leads to limited diffusion of the radioimmunoconjugates into normal brain parenchyma: a model to estimate absorbed radiation dose. Int. J. Radiat. Oncol. Biol. Phys.40(4), 835–844 (1998).
  • Bourne S, Pemberton L, Moseley R, Lashford LS, Coakham HB, Kemshead JT. Monoclonal antibodies M340 and UJ181.4 recognize antigens associated with primitive neuroectodermal tumours/tissues. Hybridoma8(4), 415–426 (1989).
  • Wikstrand CJ, Fredman P, Svennerholm L, Bigner DD. Detection of glioma-associated gangliosides GM2, GD2, GD3, 3´-isoLM1 3´,6´-isoLD1 in central nervous system tumors in vitro and in vivo using epitope-defined monoclonal antibodies. Prog. Brain Res.101, 213–223 (1994).
  • Krizan Z, Murray JL, Hersh EM et al. Increased labeling of human melanoma cells in vitro using combinations of monoclonal antibodies recognizing separate cell surface antigenic determinants. Cancer Res.45(10), 4904–4909 (1985).
  • Weterman MA, Ajubi N, Van Dinter IM et al. NMB, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int. J. Cancer60(1), 73–81 (1995).
  • Kool M, van der Linden M, de Haas M et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl Acad. Sci. USA96(12), 6914–6919 (1999).
  • Erickson HP. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr. Opin. Cell Biol.5(5), 869–876 (1993).
  • Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev. Dyn.218(2), 235–259 (2000).
  • Bourdon MA, Wikstrand CJ, Furthmayr H, Matthews TJ, Bigner DD. Human glioma–mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res.43(6), 2796–2805 (1983).
  • Bourdon MA, Matthews TJ, Pizzo SV, Bigner DD. Immunochemical and biochemical characterization of a glioma-associated extracellular matrix glycoprotein. J. Cell. Biochem.28, 183–195 (1985).
  • Howeedy AA, Virtanen I, Laitinen L, Gould NS, Koukoulis GK, Gould VE. Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab. Invest.63(6), 798–806 (1990).
  • Nies DE, Hemesath TJ, Kim JH, Gulcher JR, Stefansson K. The complete cDNA sequence of human hexabrachion (Tenascin). A multidomain protein containing unique epidermal growth factor repeats. J. Biol. Chem.266(5), 2818–2823 (1991).
  • Erickson HP, Inglesias JL. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature311(5983), 267–269 (1984).
  • Pas J, Wyszko E, Rolle K et al. Analysis of structure and function of tenascin-C. Int. J. Biochem. Cell Biol.38(9), 1594–1602 (2006).
  • Borsi L, Carnemolla B, Nicolo G, Spina B, Tanara G, Zardi L. Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int. J. Cancer52(5), 688–692 (1992).
  • Ventimiglia JB, Wikstrand CJ, Ostrowski LE, Bourdon MA, Lightner VA, Bigner DD. Tenascin expression in human glioma cell lines and normal tissues. J. Neuroimmunol.36(1), 41–55 (1992).
  • Zagzag D, Friedlander DR, Miller DC et al. Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res.55(4), 907–914 (1995).
  • Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH. Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int. J. Cancer98(3), 362–369 (2002).
  • Behrem S, Zarkovic K, Eskinja N, Jonjic N. Distribution pattern of tenascin-C in glioblastoma: correlation with angiogenesis and tumor cell proliferation. Pathol. Oncol. Res.11(4), 229–235 (2005).
  • Hau P, Kunz-Schughart LA, Rummele P et al. Tenascin-C protein is induced by transforming growth factor-β1 but does not correlate with time to tumor progression in high-grade gliomas. J. Neurooncol.77(1), 1–7 (2006).
  • Bigner DD, Brown MT, Friedman AH et al. Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: Phase I trial results. J. Clin. Oncol.16(6), 2202–2212 (1998).
  • Zagzag D, Friedlander DR, Dosik J et al. Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res.56(1), 182–189 (1996).
  • Zagzag D, Shiff B, Jallo GI et al. Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res.62(9), 2660–2668 (2002).
  • Garcion E, Halilagic A, Faissner A, ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development131(14), 3423–3432 (2004).
  • Garwood J, Garcion E, Dobbertin A et al. The extracellular matrix glycoprotein tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. Eur. J. Neurosci.20(10), 2524–2540 (2004).
  • Ilunga K, Nishiura R, Inada H et al. Co-stimulation of human breast cancer cells with transforming growth factor-β and tenascin-C enhances matrix metalloproteinase-9 expression and cancer cell invasion. Int. J. Exp. Pathol.85(6), 373–379 (2004).
  • Nishio T, Kawaguchi S, Yamamoto M, Iseda T, Kawasaki T, Hase T. Tenascin-C regulates proliferation and migration of cultured astrocytes in a scratch wound assay. Neuroscience132(1), 87–102 (2005).
  • Ahmed I, Liu HY, Mamiya PC et al. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J. Biomed. Mater. Res. A76(4), 851–860 (2006).
  • Swindle CS, Tran KT, Johnson TD et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol.154(2), 459–468 (2001).
  • Balza E, Siri A, Ponassi M et al. Production and characterization of monoclonal antibodies specific for different epitopes of human tenascin. FEBS Lett.332(1–2), 39–43 (1993).
  • De Santis R, Anastasi Am, D’Alessio V et al. Novel antitenascin antibody with increased tumour localisation for pretargeted antibody-guided radioimmunotherapy (PAGRIT). Br. J. Cancer88(7), 996–1003 (2003).
  • Petronzelli F, Pelliccia A, Anastasi AM et al. Improved tumor targeting by combined use of two antitenascin antibodies. Clin. Cancer Res.11(19 Pt 2), S7137–S7145 (2005).
  • Brack SS, Silacci M, Birchler M, Neri D. Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin. Cancer Res.12(10), 3200–3208 (2006).
  • Reilly RM. Radioimmunotherapy of solid tumors: the promise of pretargeting strategies using bispecific antibodies and radiolabeled haptens. J. Nucl. Med.47(2), 196–199 (2006).
  • Paganelli G, Bartolomei M, Ferrari M et al. Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: Phase I study and preliminary therapeutic results. Cancer Biother. Radiopharm.16(3), 227–235 (2001).
  • Bartolomei M, Mazzetta C, Handkiewicz-Junak D et al. Combined treatment of glioblastoma patients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and temozolomide. Q. J. Nucl. Med. Mol. Imaging48(3), 220–228 (2004).
  • Riva P, Arista A, Franceschi G et al. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res.55(23 Suppl.), S5952–S5956 (1995).
  • Riva P, Franceschi G, Frattarelli M et al. 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma – Phase I and II study. Acta Oncol.38(3), 351–359 (1999).
  • Riva P, Franceschi G, Frattarelli M et al. Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a Phase I study. Clin. Cancer Res.5(10 Suppl.), S3275–S3280 (1999).
  • Bourdon MA, Coleman RE, Blasberg RG, Groothuis DR, Bigner DD. Monoclonal antibody localization in subcutaneous and intracranial human glioma xenografts: paired-label and imaging analysis. Anticancer Res.4(3), 133–140 (1984).
  • Bullard DE, Wikstrand CJ, Humphrey PA et al. Specific imaging of human brain tumor xenografts utilizing radiolabelled monoclonal antibodies (mAbs). Nuklearmedizin25(6), 210–215 (1986).
  • Colapinto EV, Lee YS, Humphrey PA et al. The localisation of radiolabelled murine monoclonal antibody 81C6 and its Fab fragment in human glioma xenografts in athymic mice. Br. J. Neurosurg.2(2), 179–191 (1988).
  • Lee YS, Bullard DE, Zalutsky MR et al. Therapeutic efficacy of antiglioma mesenchymal extracellular matrix 131I-radiolabeled murine monoclonal antibody in a human glioma xenograft model. Cancer Res.48(3), 559–566 (1988).
  • Zalutsky MR, Moseley RP, Coakham HB, Coleman RE, Bigner DD. Pharmacokinetics and tumor localization of 131I-labeled anti-tenascin monoclonal antibody 81C6 in patients with gliomas and other intracranial malignancies. Cancer Res.49(10), 2807–2813 (1989).
  • Zalutsky MR, Moseley RP, Benjamin JC et al. Monoclonal antibody and F(ab´)2 fragment delivery to tumor in patients with glioma: comparison of intracarotid and intravenous administration. Cancer Res.50(13), 4105–4110 (1990).
  • Schold SC Jr, Zalutsky MR, Coleman RE et al. Distribution and dosimetry of I-123-labeled monoclonal antibody 81C6 in patients with anaplastic glioma. Invest. Radiol.28(6), 488–496 (1993).
  • Brown MT, Coleman RE, Friedman AH et al. Intrathecal 131I-labeled antitenascin monoclonal antibody 81C6 treatment of patients with leptomeningeal neoplasms or primary brain tumor resection cavities with subarachnoid communication: Phase I trial results. Clin. Cancer Res.2(6), 963–972 (1996).
  • Akabani G, Cokgor I, Coleman RE et al. Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int. J. Radiat. Oncol. Biol. Phys.46(4), 947–958 (2000).
  • Cokgor I, Akabani G, Kuan CT et al. Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.18(22), 3862–3872 (2000).
  • Reardon DA, Akabani G, Coleman RE et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol.20(5), 1389–1397 (2002).
  • Scharfen CO, Sneed PK, Wara WM et al. High activity iodine-125 interstitial implant for gliomas. Int. J. Radiat. Oncol. Biol. Phys.24, 583–591 (1992).
  • Wen PY, Alexander E III, Black PM et al. Long term results of stereotactic brachytherapy used in the initial treatment of patients with glioblastomas. Cancer73(12), 3029–3036 (1994).
  • Shrieve DC, Alexander E III, Wen PY et al. Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery36(2), 275–282; discussion 282–284 (1995).
  • Stupp R, Dietrich PY, Ostermann Kraljevic S et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J. Clin. Oncol.20(5), 1375–1382 (2002).
  • He X, Archer GE, Wikstrand CJ et al. Generation and characterization of a mouse/human chimeric antibody directed against extracellular matrix protein tenascin. J. Neuroimmunol.52(2), 127–137 (1994).
  • Reardon DA, Quinn JA, Akabani G et al. Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: Phase I trial results. J. Nucl. Med.47(6), 912–918 (2006).
  • Milenic DE, Garmestani K, Chappell LL et al. In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl. Med. Biol.29(4), 431–442 (2002).
  • Hu F, Cutler CS, Hoffman T, Sieckman G, Volkert WA, Jurisson SS. Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-βAla-BBN(7–14)NH2. Nucl. Med. Biol.29(4), 423–430 (2002).
  • Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J. Clin. Oncol.23(21), 4591–4601 (2005).
  • Frilling A, Weber F, Saner F et al. Treatment with 90Y- and 177Lu-DOTATOC in patients with metastatic neuroendocrine tumors. Surgery140(6), 968–976; discussion 976–977 (2006).
  • van Essen M, Krenning EP, Kooij PP et al. Effects of therapy with [177Lu-DOTA0, Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J. Nucl. Med.47(10), 1599–1606 (2006).
  • Macey DJ, Meredith RF. A strategy to reduce red marrow dose for intraperitoneal radioimmunotherapy. Clin. Cancer. Res.5(10 Suppl.), S3044–S3047 (1999).
  • Nilsson S, Larsen RH, Fossa SD et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res.11(12), 4451–4459 (2005).
  • Jurcic JG, Larson SM, Sgouros G et al. Targeted α particle immunotherapy for myeloid leukemia. Blood100(4), 1233–1239 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.