62
Views
30
CrossRef citations to date
0
Altmetric
Review

New approaches in metastatic melanoma: biological and molecular targeted therapies

, &
Pages 701-713 | Published online: 10 Jan 2014

References

  • Bajetta E, Del Vecchio M, Bernard-Marty C et al. Metastatic melanoma: chemotherapy. Semin. Oncol.29, 427–445 (2002).
  • Buzaid AC. Strategies for combining chemotherapy and biotherapy in melanoma. Cancer Control7, 185–197 (2000).
  • Becker JC, Kampgen E, Brocker E. Classical chemotherapy for metastatic melanoma. Clin. Exp. Dermatol.25, 503–508 (2000).
  • Li Y, McClay EF. Systemic chemotherapy for the treatment of metastatic melanoma. Semin. Oncol.29, 413–426 (2002).
  • Mandara M, Nortilli R, Sava T, Cetto GL. Chemotherapy for metastatic melanoma. Expert Rev. Anticancer Ther.6, 121–130 (2006).
  • Wang Y, Fei D, Vanderlaan M, Song A. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro.Angiogenesis7, 335–345 (2004).
  • Rini BI. Sorafenib. Expert Opin. Pharmacother.7, 453–461 (2006).
  • Rudin M, McSheehy PM, Allegrini PR et al. PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo.NMR Biomed.18, 308–321 (2005).
  • Gartside MG, Curtis A, Yudt L et al. Identification of FGFR2 as a novel melanoma oncogene. Am. Assoc. Cancer Res. Meeting Abstracts 608–c–609 April 16–20th (2005).
  • Halaban R, Rubin JS, Funasaka Y et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene7, 2195–2206 (1992).
  • Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol.24, 4340–4346 (2006).
  • Alexis JB, Martinez AE, Lutzky J. An immunohistochemical evaluation of c-kit (CD-117) expression in malignant melanoma, results of imatinib mesylate (Gleevec) therapy in three patients. Melanoma Res.15, 283–285 (2005).
  • Omholt K, Karsberg S, Platz A, Kanter L, Ringborg U, Hansson J. Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression. Clin. Cancer Res.8, 3468–3474 (2002).
  • Robertson GP. Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metastasis Rev.24, 273–285 (2005).
  • Meier F, Schittek B, Busch S et al. The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front. Biosci.10, 2986–3001 (2005).
  • Flaherty K. Targeting the MAPK in cancer. Presented at: Am. Assoc. Cancer Res. Washington, DC, USA, April 1–5th (2006).
  • Thomas NE. BRAF somatic mutations in malignant melanoma and melanocytic naevi. Melanoma Res.16, 97–103 (2006).
  • Rimoldi D, Salvi S, Lienard D et al. Lack of BRAF mutations in uveal melanoma. Cancer Res.63, 5712–5715 (2003).
  • Maldonado JL, Fridlyand J, Patel H et al. Determinants of BRAF mutations in primary melanomas. J. Natl Cancer Inst.95, 1878–1890 (2003).
  • Eisen T, Ahmad T, Flaherty KT et al. Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer95, 581–586 (2006).
  • Flaherty K. Phase II trials of BAY 43-9006 alone or in combination with chemotherapy in metastatic melanoma. Presented at: 6th World Melanoma Conference. Vancouver, Canada, September 6–10th (2005).
  • Wilhelm SM, Carter C, Tang L et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64, 7099–7109 (2004).
  • Morgan B, Utting JF, Higginson A, Thomas AL, Steward WP, Horsfield MA. A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging. Br. J. Cancer94, 1420–1427 (2006).
  • Lorigan P, Lorrie P, Chao D et al. Phase II trial of sorafenib combined with dacarbazine in metastatic melanoma patients. J. Clin. Oncol.24 (2006) (Abstract 8012).
  • Amaravadi RK, Schuchter LM, Kramer A et al. Preliminary results of a randomized Phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J. Clin. Oncol.24 (2006) (Abstract 8009).
  • Flaherty KT. Chemotherapy and targeted therapy combinations in advanced melanoma. Clin. Cancer Res.12, S2366–S2370 (2006).
  • Hoek KS, Schlegel NC, Brafford P et al. Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. Pigment Cell Res.19, 290–302 (2006).
  • Lorusso PM, Adjei AA, Varterasian M et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J. Clin. Oncol.23, 5281–5293 (2005).
  • Haas N, Smalley K, Contractor R, Sproesser K, Herlyn M. The novel MEK inhibitor AZD6244/ARRY142886 inhibits the growth of melanomas harboring the BRAFV600E mutation in vitro and in vivo.Melanoma Res.16, S92–S93 (2006).
  • Heinrich MC, Corless CL, Demetri GD et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol.21, 4342–4349 (2003).
  • Ivan D, Niveiro M, Diwan AH et al. Analysis of protein tyrosine kinases expression in the melanoma metastases of patients treated with imatinib mesylate (STI571, Gleevec). J. Cutan. Pathol.33, 280–285 (2006).
  • Ugurel S, Hildenbrand R, Zimpfer A et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br. J. Cancer92, 1398–1405 (2005).
  • Wyman K, Atkins MB, Prieto V et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer106, 2005–2011 (2006).
  • Graff JR, McNulty AM, Hanna KR et al. The protein kinase Cβ-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res.65, 7462–7469 (2005).
  • Yang L, Dan HC, Sun M et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res.64, 4394–4399 (2004).
  • Margolin K, Longmate J, Baratta T et al. CCI-779 in metastatic melanoma: a Phase II trial of the California Cancer Consortium. Cancer104, 1045–1048 (2005).
  • Lasithiotakis K, Schittek B, Sinnberg T et al. Combined targeting of MAPK and AKT signaling pathways is a promising strategy for melanoma treatment. Melanoma Res.16, S94–S95 (2006).
  • Bedikian AY, Millward M, Pehamberger H et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the oblimersen melanoma study group. J. Clin. Oncol.24, 4738–4745 (2006).
  • Keilholz U, Martus P, Punt CJ et al. Prognostic factors for survival and factors associated with long-term remission in patients with advanced melanoma receiving cytokine-based treatments: second analysis of a randomised EORTC Melanoma Group trial comparing interferon-α2a (IFNα) and interleukin 2 (IL-2) with or without cisplatin. Eur. J. Cancer38, 1501–1511 (2002).
  • Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit. Rev. Immunol.24, 267–296 (2004).
  • Yang J, Price MA, Neudauer CL et al. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J. Cell Biol.165, 881–891 (2004).
  • McCarthy J, Price MA, Yang J, Lida J, Turley E, Ferrone S. Melanoma chondroitin sulfate proteoglycan promotes anchorage-independent growth of melanoma cells through activation of ERK1/2. Melanoma Res.16, S95, ABS-0174 (2006).
  • Wang X, Ko EC, Peng L, Gillies SD, Ferrone S. Human high molecular weight melanoma-associated antigen mimicry by mouse anti-idiotypic monoclonal antibody MK2–23: enhancement of immunogenicity of anti-idiotypic monoclonal antibody MK2–23 by fusion with interleukin 2. Cancer Res.65, 6976–6983 (2005).
  • Hersey P, Sosman J, O’Day SM et al. A Phase II, randomized, open-label study evaluating the antitumor activity of MEDI-522, a humanized monoclonal antibody directed against the human αvβ3 (avb3) integrin, ± dacarbazine (DTIC) in patients with metastatic melanoma (MM). J. Clin. Oncol.23 (2005) (Abstract 7507).
  • Keilholz U. Biochemotherapy of melanoma. Forum (Genova)13, 158–165; quiz 189 (2003).
  • Keilholz U, Punt CJ, Gore M et al. Dacarbazine, cisplatin, and interferon-a-2b with or without interleukin-2 in metastatic melanoma: a randomized Phase III trial (18951) of the European Organisation for Research and Treatment of Cancer Melanoma Group. J. Clin. Oncol.23, 6747–6755 (2005).
  • Tarhini AA, Agarwala SS. Interleukin-2 for the treatment of melanoma. Curr. Opin. Investig. Drugs6, 1234–1239 (2005).
  • Weinreich DM, Rosenberg SA. Response rates of patients with metastatic melanoma to high-dose intravenous interleukin-2 after prior exposure to α-interferon or low-dose interleukin-2. J. Immunother.25, 185–187 (2002).
  • Pilla L, Valenti R, Marrari A et al. Vaccination: role in metastatic melanoma. Expert Rev. Anticancer Ther.6, 1305–1318 (2006).
  • Hersey P, Coates AS, McCarthy WH et al. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J. Clin. Oncol.20, 4181–4190 (2002).
  • Hsueh EC, Essner R, Foshag LJ et al. Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J. Clin. Oncol.20, 4549–4554 (2002).
  • Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006).
  • Romero P, Valmori D, Pittet MJ et al. Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol. Rev.188, 81–96 (2002).
  • Speiser DE, Lienard D, Rufer N et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115, 739–746 (2005).
  • Rosenberg SA, Sherry RM, Morton KE et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175, 6169–6176 (2005).
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat. Med.10, 909–915 (2004).
  • Appay V, Jandus C, Voelter V et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol.177, 1670–1678 (2006).
  • Zippelius A, Batard P, Rubio-Godoy V et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res.64, 2865–2873 (2004).
  • Romero P, Cerottini JC, Speiser DE. Monitoring tumor antigen specific T-cell responses in cancer patients and Phase I clinical trials of peptide-based vaccination. Cancer Immunol. Immunother.53, 249–255 (2004).
  • Speiser DE, Pittet MJ, Rimoldi D et al. Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor-specific T cells. Semin. Cancer Biol.13, 461–472 (2003).
  • Speiser DE, Pittet MJ, Guillaume P et al. Ex vivo analysis of human antigen-specific CD8+ T-cell responses: quality assessment of fluorescent HLA-A2 multimer and interferon-γ ELISPOT assays for patient immune monitoring. J. Immunother.27, 298–308 (2004).
  • Appay V, Reynard S, Voelter V, Romero P, Speiser DE, Leyvraz S. Immuno-monitoring of CD8+ T cells in whole blood versus PBMC samples. J. Immunol. Methods309, 192–199 (2006).
  • Speiser DE, Baumgaertner P, Barbey C et al. A novel approach to characterize clonality and differentiation of human melanoma-specific T cell responses: spontaneous priming and efficient boosting by vaccination. J. Immunol.177, 1338–1348 (2006).
  • Faries MB, Czerniecki BJ. Dendritic cells in melanoma immunotherapy. Curr. Treat. Options Oncol.6, 175–184 (2005).
  • Tacken PJ, Torensma R, Figdor CG. Targeting antigens to dendritic cells in vivo.Immunobiology211, 599–608 (2006).
  • Enomoto Y, Bharti A, Khaleque AA et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J. Immunol.177, 5946–5955 (2006).
  • Rosenberg SA, Dudley ME. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl Acad. Sci. USA101(Suppl. 2), 14639–14645 (2004).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23, 2346–2357 (2005).
  • Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol.6, 383–393 (2006).
  • Michielin O, Blanchet JS, Fagerberg T et al. Tinkering with nature: the tale of optimizing peptide based cancer vaccines. Cancer Treat. Res.123, 267–291 (2005).
  • Le Gal FA, Ayyoub M, Dutoit V et al. Distinct structural TCR repertoires in naturally occurring versus vaccine-induced CD8+ T-cell responses to the tumor-specific antigen NY-ESO-1. J. Immunother.28, 252–257 (2005).
  • Liu H, Leung BP. CD4+CD25+ regulatory T cells in health and disease. Clin. Exp. Pharmacol. Physiol.33, 519–524 (2006).
  • Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med.174, 561–569 (1991).
  • Weber JS. The clinical utility of cytotoxic T lymphocyte antigen 4 abrogation by human antibodies. Melanoma Res.16, 379–383 (2006).
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med.190, 355–366 (1999).
  • Blansfield JA, Beck KE, Tran K et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother.28, 593–598 (2005).
  • Reuben JM, Lee BN, Li C et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer106, 2437–2444 (2006).
  • Attia P, Phan GQ, Maker AV et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol.23, 6043–6053 (2005).
  • Sanderson K, Scotland R, Lee P et al. Autoimmunity in a Phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol.23, 741–750 (2005).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372–8377 (2003).
  • Ribas A, Camacho LH, Lopez-Berestein G et al. Antitumor activity in melanoma and anti-self responses in a Phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J. Clin. Oncol.23, 8968–8977 (2005).
  • McMillin DW, Hewes B, Gangadharan B, Archer DR, Mittler RS, Spencer HT. Complete regression of large solid tumors using engineered drug-resistant hematopoietic cells and anti-CD137 immunotherapy. Hum. Gene Ther.17, 798–806 (2006).
  • Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307, 58–62 (2005).
  • Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin αvβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat. Med.4, 408–414 (1998).
  • Lejeune FJ, Kroon BB, Di Filippo F et al. Isolated limb perfusion: the European experience. Surg. Oncol. Clin. North Am.10, 821–832, ix (2001).
  • Cornett WR, McCall LM, Petersen RP et al. Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American College of Surgeons Oncology Group Trial Z0020. J. Clin. Oncol.24, 4196–4201 (2006).
  • Lejeune F, Eggermont AM. Hyperthermic isolated limb perfusion with tumor necrosis factor is a useful therapy for advanced melanoma of the limbs. (Letter to the Editor). J. Clin. Oncol.25(11), 1449–1450 (2007).
  • Lejeune FJ, Lienard D, Matter M, Ruegg C. Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun.6, 6 (2006).
  • Borsi L, Balza E, Carnemolla B et al. Selective targeted delivery of TNFα to tumor blood vessels. Blood102, 4384–4392 (2003).
  • Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A. Synergistic antitumor activity of cisplatin, paclitaxel, gemcitabine with tumor vasculature-targeted tumor necrosis factor-α. Clin. Cancer Res.12, 175–182 (2006).
  • Liu Y, Zhang W, Cheung L, Wu Q, Li C, Rosenblum M. The anti-gp240 fusion toxin scFvMEL/TNF shows potent antitumor activity and synergy with chemotherapeutic agents. Proc. Am. Assoc. Cancer Res. (2005) (Abstract 687).
  • Willett CG, Boucher Y, di Tomaso E et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med.10, 145–147 (2004).
  • Danielsen T, Rofstad EK. The constitutive level of vascular endothelial growth factor (VEGF) is more important than hypoxia-induced VEGF up-regulation in the angiogenesis of human melanoma xenografts. Br. J. Cancer82, 1528–1534 (2000).
  • Lejeune F. Improving drug penetration in tumors by targeting tumor vascularization. Targ. Oncol.1(2), 90–96 (2006).
  • Brunstein F, Santos ID, Ferreira LM, van Tiel ST, Eggermont AM, Ten Hagen TL. Histamine combined with melphalan in isolated limb perfusion for the treatment of locally advanced soft tissue sarcomas: preclinical studies in rats. Acta Cir. Bras.20, 275–279 (2005).
  • Eisen T, Boshoff C, Mak I et al. Continuous low dose thalidomide: a Phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br. J. Cancer82, 812–817 (2000).
  • Krown SE, Niedzwiecki D, Hwu WJ, Hodgson L, Houghton AN, Haluska FG. Phase II study of temozolomide and thalidomide in patients with metastatic melanoma in the brain: high rate of thromboembolic events (CALGB 500102). Cancer107, 1883–1890 (2006).
  • Hwu WJ, Krown SE, Menell JH et al. Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J. Clin. Oncol.21, 3351–3356 (2003).
  • Laber DA, Okeke RI, Arce-Lara CM et al. A Phase II study of extended dose temozolomide and thalidomide in previously treated patients with metastatic melanoma. J. Cancer Res. Clin. Oncol.132, 611–616 (2006).
  • Dredge K, Horsfall R, Robinson SP et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro.Microvasc. Res.69, 56–63 (2005).
  • Bartlett JB, Michael A, Clarke IA et al. Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced cancers. Br. J. Cancer90, 955–961 (2004).
  • Zaman K, Driscoll R, Hahn D et al. Monitoring multiple angiogenesis-related molecules in the blood of cancer patients shows a correlation between VEGF-A and MMP-9 levels before treatment and divergent changes after surgical vs. conservative therapy. Int. J. Cancer118, 755–764 (2006).
  • Schadendorf D. Gene-based therapy of malignant melanoma. Semin. Oncol.29, 503–512 (2002).
  • Yeung ML, Bennasser Y, Le SY, Jeang KT. siRNA, miRNA and HIV: promises and challenges. Cell Res.15, 935–946 (2005).
  • Katagiri Y, Hozumi Y, Kondo S. Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo.J. Dermatol. Sci.42, 215–224 (2006).
  • Zhang L, Huang J, Yang N et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103, 9136–9141 (2006).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66, 1883–1890; comment and discussion 1891–1886 (2006).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65, 9328–9337 (2005).
  • Frank NY, Margaryan A, Huang Y et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res.65, 4320–4333 (2005).
  • Locati M, Otero K, Schioppa T et al. The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy57, 972–982 (2002).
  • Scala S, Giuliano P, Ascierto PA et al. Human melanoma metastases express functional CXCR4. Clin. Cancer Res.12, 2427–2433 (2006).
  • Kim J, Mori T, Chen SL et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann. Surg.244, 113–120 (2006).
  • Chen X, Beutler JA, McCloud TG et al. Tannic acid is an inhibitor of CXCL12 (SDF-1α)/CXCR4 with antiangiogenic activity. Clin. Cancer Res.9, 3115–3123 (2003).
  • Hatse S, Princen K, De Clercq E et al. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor. Biochem. Pharmacol.70, 752–761 (2005).
  • Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med.12, 406–414 (2006).
  • Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005).
  • McGill GG, Horstmann M, Widlund HR et al. E. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell109, 707–718 (2002).
  • Du J, Widlund HR, Horstmann MA et al. Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF. Cancer Cell6, 565–576 (2004).
  • McGill GG, Haq R, Nishimura EK, Fisher DE. c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem.281, 10365–10373 (2006).
  • Larue L, Delmas V. The WNT/β-catenin pathway in melanoma. Front. Biosci.11, 733–742 (2006).
  • Massi D, Tarantini F, Franchi A et al. Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod. Pathol.19, 246–254 (2006).
  • Nickoloff BJ, Hendrix MJ, Pollock PM, Trent JM, Miele L, Qin JZ. Notch and NOXA-related pathways in melanoma cells. J. Investig. Dermatol. Symp. Proc.10, 95–104 (2005).
  • Weeraratna AT, Jiang Y, Hostetter G et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell1, 279–288 (2002).
  • Hipfel R, Schittek B, Bodingbauer Y, Garbe C. Specifically regulated genes in malignant melanoma tissues identified by subtractive hybridization. Br. J. Cancer82, 1149–1157 (2000).
  • Schittek B, Psenner K, Sauer B, Meier F, Iftner T, Garbe C. Upregulated expression of the Y-box binding protein (YB-1) in melanoma cells enforces melanoma proliferation, survival and invasion and increases chemoresistance. Melanoma Res.16, S104 (2006).

Websites

  • Sorafenib (Nexavar®) www.bayerhealthcare.com/401.0.html?&L=2&tx_ttnews%5Btt_news%5D=480&tx_ttnews%5BbackPid%5D=4&cHash=772cdbe368
  • Canvaxin™ www.medicalnewstoday.com/medicalnews.php?newsid=22446
  • Marchand’s Thesis www.edoc.bib.ucl.ac.be:81/ETD-db/ collection/available/ BelnUcetd-10052006-185145/unrestricted/TheseMM0.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.