89
Views
16
CrossRef citations to date
0
Altmetric
Review

Human papillomavirus therapeutic vaccines in head and neck tumors

&
Pages 753-766 | Published online: 10 Jan 2014

References

  • Campo MS (Ed.). Papillomavirus Research. From Natural History to Vaccines and Beyond. Caister Academic Press, Norfolk, UK (2006).
  • Munoz N, Bosch FX, de Sanjose S et al. International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med.348(6), 518–527 (2003).
  • IARC Monographs on the evaluation of carcinogenic risks to humans. Human Papillomavirus, Vol. 90. International Agency for Research on Cancer, Lyon, France (2007) (In Press).
  • Munger K, Baldwin A, Edwards KM et al. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol.78(21), 11451–11460 (2004).
  • Rosenquist K, Wennerberg J, Schildt EB, Bladstrom A, Goran Hansson B, Andersson G. Oral status, oral infections and some lifestyle factors as risk factors for oral and oropharyngeal squamous cell carcinoma. A population-based case–control study in southern Sweden. Acta Otolaryngol.125(12), 1327–1336 (2005).
  • Smith EM, Ritchie JM, Summersgill KF et al. Age, sexual behavior and human papillomavirus infection in oral cavity and oropharyngeal cancers. Int. J. Cancer108(5), 766–772 (2004).
  • Ritchie JM, Smith EM, Summersgill KF et al. Human papillomavirus infection as a prognostic factor in carcinomas of the oral cavity and oropharynx. Int. J. Cancer104(3), 336–344 (2003).
  • Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol. Biomarkers Prev.14(2), 467–475 (2005).
  • Syrjanen S. HPV infections and tonsillar carcinoma. J. Clin. Pathol.57(5), 449–455 (2004).
  • Syrjanen S. Human papillomavirus (HPV) in head and neck cancer. J. Clin. Virol.32(Suppl.), S59–S66 (2005).
  • Snijders PJ, Meijer CJ, van den Brule AJ, Schrijnemakers HF, Snow GB, Walboomers JM. Human papillomavirus (HPV) type 16 and 33 E6/E7 region transcripts in tonsillar carcinomas can originate from integrated and episomal HPV DNA. J. Gen. Virol.73(Pt 8), 2059–2066 (1992).
  • Wilczynski SP, Lin BT, Xie Y, Paz IB. Detection of human papillomavirus DNA and oncoprotein overexpression are associated with distinct morphological patterns of tonsillar squamous cell carcinoma. Am. J. Pathol.152(1), 145–156 (1998).
  • van Houten VM, Snijders PJ, van den Brekel MW et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int. J. Cancer93(2), 232–235 (2001).
  • Venuti A, Manni V, Morello R, De Marco F, Marzetti F, Marcante ML. Physical state and expression of human papillomavirus in laryngeal carcinoma and surrounding normal mucosa. J. Med. Virol.60(4), 396–402 (2000).
  • Steenbergen RD, Hermsen MA, Walboomers JM et al. Integrated human papillomavirus type 16 and loss of heterozygosity at 11q22 and 18q21 in oral carcinoma and its derivative cell line. Cancer Res.55(22), 5465–5471 (1995).
  • Gillison ML, Koch WM, Capone RB et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst.92(9), 709–720 (2000).
  • Badaracco G, Venuti A, Morello R, Muller A, Marcante ML. Human papillomavirus in head and neck carcinomas: prevalence, physical status and relationship with clinical/pathological parameters. Anticancer Res.20(2B), 1301–1305 (2000).
  • Klussmann JP, Weissenborn SJ, Wieland U et al. Prevalence, distribution, and viral load of human papillomavirus 16 DNA in tonsillar carcinomas. Cancer92(11), 2875–2884 (2001).
  • Schwartz SM, Daling JR, Doody DR et al. Oral cancer risk in relation to sexual history and evidence of HPV infection. J. Natl Cancer Inst.90(21), 1626–1636 (1998).
  • Mork J, Lie AK, Glattre E et al. Human papillomavirus infection as a risk factor for squamous cell carcinoma of the head and neck. N. Engl. J. Med.344(15), 1125–1131 (2001).
  • Zumbach K, Hoffman M, Kahn T et al. Antibodies against oncoproteins E6 and E7 of HPV types 16 and 18 in patients with head and neck squamous cell carcinoma. Int. J. Cancer85(6), 815–818 (2000).
  • Di Lonardo A, Marcante ML, Poggiali F, Venuti A. HPV 16 E7 antibody levels in cervical cancer patients: before and after treatment. J. Med. Virol.54(3), 192–195 (1998).
  • Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck cancers. J. Clin. Oncol.24(17), 2606–2611 (2006).
  • Evander M, Edlund K, Gustafsson A et al. Human papillomavirus infection is transient in young women: a population-based cohort study. J. Infect. Dis.171(4), 1026–1030 (1995).
  • Schiffman M, Kjaer SK. Chapter 2: natural history of anogenital human papillomavirus infection and neoplasia. J. Natl Cancer Inst. Monogr.31, 14–19 (2003).
  • Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. J. Virol.75(9), 4283–4296 (2001).
  • Zhang B, Li P, Wang E et al. The E5 protein of human papillomavirus type 16 perturbs MHC class II antigen maturation in human foreskin keratinocytes treated with interferon-γ. Virology310(1), 100–108 (2003).
  • Ashrafi GH, Haghshenas M, Marchetti B, Campo MS. E5 protein of human papillomavirus 16 downregulates HLA class I and interacts with the heavy chain via its first hydrophobic domain. Int. J. Cancer119(9), 2105–2112 (2006).
  • Mota F, Rayment N, Chong S, Singer A, Chain B. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin. Exp. Immunol.116(1), 33–40 (1999).
  • Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM, Huang SC. Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J. Immunol.167(5), 2972–2978 (2001).
  • Lowy DR, Gillison ML. A new link between Fanconi anemia and human papillomavirus-associated malignancies. J. Natl Cancer Inst.95(22), 1648–1650 (2003).
  • Kirnbauer R, Hubbert NL, Wheeler CM, Becker TM, Lowy DR, Schiller JT. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J. Natl Cancer Inst.86(7), 494–499 (1994).
  • Castle PE, Shields T, Kirnbauer R et al. Sexual behavior, human papillomavirus type 16 (HPV 16) infection, and HPV 16 seropositivity. Sex. Transm. Dis.29(3), 182–187 (2002).
  • Carter JJ, Koutsky LA, Hughes JP et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J. Infect. Dis.181(6), 1911–1919 (2000).
  • Ho GY, Studentsov YY, Bierman R, Burk RD. Natural history of human papillomavirus type 16 virus-like particle antibodies in young women. Cancer Epidemiol. Biomarkers Prev.13(1), 110–116 (2004).
  • Viscidi RP, Schiffman M, Hildesheim A et al. Seroreactivity to human papillomavirus (HPV) types 16, 18, or 31 and risk of subsequent HPV infection: results from a population-based study in Costa Rica. Cancer Epidemiol. Biomarkers Prev.13(2), 324–327 (2004).
  • Bard E, Riethmuller D, Meillet D et al. High-risk papillomavirus infection is associated with altered antibody responses in genital tract: non-specific responses in HPV infection. Viral Immunol.17(3), 381–389 (2004).
  • Carter JJ, Madeleine MM, Shera K et al. Human papillomavirus 16 and 18 L1 serology compared across anogenital cancer sites. Cancer Res.61(5), 1934–1940 (2001).
  • Jochmus-Kudielka I, Schneider A, Braun R et al. Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. J. Natl Cancer Inst.81(22), 1698–1704 (1989).
  • Bleul C, Muller M, Frank R et al. Human papillomavirus type 18 E6 and E7 antibodies in human sera: increased anti-E7 prevalence in cervical cancer patients. J. Clin. Microbiol.29(8), 1579–1588 (1991).
  • Tjiong MY, Zumbach K, Schegget JT et al. Antibodies against human papillomavirus type 16 and 18 E6 and E7 proteins in cervicovaginal washings and serum of patients with cervical neoplasia. Viral Immunol.14(4), 415–424 (2001).
  • Stanley M. Antibody reactivity to HPV E6 and E7 oncoproteins and early diagnosis of invasive cervical cancer. Am. J. Obstet. Gynecol.188(1), 3–4 (2003).
  • Herrero R, Castellsague X, Pawlita M et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J. Natl Cancer Inst.95(23), 1772–1783 (2003).
  • Benton C, Shahidullah H, Hunter JAA. Human papillomavirus in the immunosuppressed. Papillomavirus Rep.3(2), 23–26 (1992).
  • Palefsky JM, Minkoff H, Kalish LA et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J. Natl Cancer Inst.91(3), 226–236 (1999).
  • Coleman N, Birley HD, Renton AM et al. Immunological events in regressing genital warts. Am. J. Clin. Pathol.102(6), 768–774, (1994).
  • Höpfl R, Heim K, Christensen N et al. Spontaneous regression of CIN and delayed type hypersensitivity to HPV-16 oncoprotein E7. Lancet356(9246), 1985–1986 (2000).
  • Kadish AS, Timmins P, Wang Y et al. Albert Einstein Cervix Dysplasia Clinical Consortium. Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol. Biomarkers Prev.11(5), 483–488 (2002).
  • Welters MJ, Jong A, van den Eeden SJ et al. Frequent display of human papillomavirus type 16 E6-specific memory T-helper cells in the healthy population as witness of previous viral encounter. Cancer Res.63(3), 636–641 (2003).
  • Luxton JC, Rowe AJ, Cridland JC, Coletart T, Wilson P, Shepherd PS. Proliferative T cell responses to the human papillomavirus type 16 E7 protein in women with cervical dysplasia and cervical carcinoma and in healthy individuals. J. Gen. Virol.77(Pt 7), 1585–1593 (1996).
  • van der Burg SH, Ressing ME, Kwappenberg KM et al. Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int. J. Cancer91(5), 612–618 (2001).
  • de Jong A, van Poelgeest MI, van der Hulst JM et al. Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res.64(15), 5449–5455 (2004).
  • Shope RE. Immunization of rabbits to infectious papillomatosis. J. Exp. Med.65, 219–231 (1937).
  • Koller LD, Olson C. Attempted transmission of warts from man, cattle, and horses and of deer fibroma, to selected hosts. J. Invest. Dermatol.58(6), 366–368 (1972).
  • Dworetzky I, Shober R, Chattopadhyay SK, Lowy DR. A quantitative in vitro focus assay for bovine papilloma virus. Virology103(2), 369–375 (1980).
  • Christensen ND, Kreider JW. Antibody-mediated neutralization in vivo of infectious papillomaviruses. J. Virol.64(7), 3151–3156 (1990).
  • Bonnez W, Rose RC, Reichman RC. Antibody mediated neutralization of human papillomavirus type 11 (HPV-11) infection in the nude mouse: detection of HPV-11 mRNAs. J. Infect. Dis.165(2), 376–380 (1992).
  • Jarrett WF, O’Neil BW, Gaukroger JM, Laird HM, Smith KT, Campo MS. Studies on vaccination against papillomaviruses: a comparison of purified virus, tumour extract and transformed cells in prophylactic vaccination. Vet. Rec.126(18), 449–452 (1990).
  • Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology185(1), 251–257 (1991).
  • Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA89(24), 12180–12184 (1992).
  • Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell5(3), 557–567 (2000).
  • Breitburd F, Kirnbauer R, Hubbert NL et al. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J. Virol.69(6), 3959–3963 (1995).
  • Suzich JA, Ghim SJ, Palmer-Hill FJ et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl Acad. Sci. USA92(25), 11553–11557 (1995).
  • Harro CD, Pang YY, Roden RB et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J. Natl Cancer Inst.93(4), 284–292 (2001).
  • Koutsky LA, Ault KA, Wheeler CM et al.; Proof of Principle Study Investigators. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med.347(21), 1645–1651 (2002).
  • Harper DM, Franco EL, Wheeler CM et al.; HPV Vaccine Study Group. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367(9518), 1247–1255 (2006).
  • Harper DM, Franco EL, Wheeler C et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364(9447), 1757–1765 (2004).
  • Villa LL, Costa RL, Petta CA et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre Phase II efficacy trial. Lancet Oncol.6(5), 271–278 (2005).
  • Clifford G, Franceschi S, Diaz M, Munoz N, Villa LL. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine24(Suppl. 3), S26–S34 (2006).
  • Campo MS, Grindlay GJ, O’Neil BW, Chandrachud LM, McGarvie GM, Jarrett WF. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J. Gen. Virol.74(6), 945–953 (1993).
  • Embers ME, Budgeon LR, Pickel M, Christensen ND. Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein. J. Virol.76(19), 9798–9805 (2002).
  • Roden RB, Yutzy WH IV, Fallon R, Inglis S, Lowy DR, Schiller JT. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology270(2), 254–257 (2000).
  • Pastrana DV, Gambhira R, Buck CB et al. Cross-neutralization of cutaneous and mucosal papillomavirus types with anti-sera to the amino terminus of L2. Virology337(2), 365–372 (2005).
  • Gambhira R, Gravitt PE, Bossis I, Stern PI, Viscidi RP, Roden RB. Vaccination of healthy volunteers with human papillomavirus type 16 L2E7E6 fusion protein induces serum antibody that neutralizes across papillomavirus species. Cancer Res.66(23), 11120–11124 (2006).
  • Stanley MA, Moore RA, Nicholls PK et al. Intra-epithelial vaccination with COPV L1 DNA by particle-mediated DNA delivery protects against mucosal challenge with infectious COPV in beagle dogs. Vaccine19(20–22), 2783–2792 (2001).
  • Schreckenberger C, Sethupathi P, Kanjanahaluethai A et al. Induction of an HPV 6bL1-specific mucosal IgA response by DNA immunization. Vaccine19(2–3), 227–233 (2000).
  • Yuan H, Estes PA, Chen Y et al. Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J. Virol.75(17), 7848–7853 (2001).
  • Fernando GJP, Stewart TJ, Tindle RW, Frazer IH. TH2-type CD4+ cells neither enhance nor suppress antitumor CTL activity in a mouse tumor model. J. Immunol.161(5), 2421–2427 (1998).
  • Gao FG, Khammanivong V, Liu WJ, Leggatt GR, Frazer IH, Fernando GJ. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res.62(22), 6438–6441 (2002).
  • Brady CS, Bartholomew JS, Burt DJ et al. Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens55(5), 401–411 (2000).
  • Evans M, Borysiewicz LK, Evans AS et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J. Immunol.167(9), 5420–5428 (2001).
  • Feltkamp MC, Smits HL, Vierboom MP et al. Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur. J. Immunol.23(9), 2242–2249 (1993).
  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF et al. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res.56(1), 21–26 (1996).
  • Chen CH, Ji H, Suh KW, Choti MA, Pardoll DM, Wu TC. Gene gun-mediated DNA vaccination induces antitumor immunity against human papillomavirus type 16 E7-expressing murine tumor metastases in the liver and lungs. Gene Ther.6(12), 1972–1981 (1999).
  • Ji HX, Wang TL, Chen CH et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum. Gene Ther.10(17), 2727–2740 (1999).
  • Meneguzzi G, Cerni C, Kieny MP, Lathe R. Immunization against human papillomavirus type 16 tumor cells with recombinant vaccinia viruses expressing E6 and E7. Virology181(1), 62–69 (1991).
  • Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y. Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8+ T-cell responses that home to the tumor site. J. Virol.75(20), 9654–9664 (2001).
  • Velders MP, McElhiney S, Cassetti MC et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res.61(21), 7861–7867 (2001).
  • Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J. Immunol.167(11), 6471–6479 (2001).
  • Gerard CM, Baudson N, Kraemer K et al. Therapeutic potential of protein and adjuvant vaccinations on tumour growth. Vaccine19(17–19), 2583–2589 (2001).
  • Zwaveling S, Ferreira Mota SC, Nouta J et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J. Immunol.169(1), 350–358 (2002).
  • Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovisbacilli Calmette–Guerin (BCG) hsp65 and HPV16 E7. Clin. Exp. Immunol.121(2), 216–225 (2000).
  • Hariharan K, Braslawsky G, Barnett RS et al. Tumor regression in mice following vaccination with human papillomavirus E7 recombinant protein in PROVAX. Int. J. Oncol.12(6), 1229–1235 (1998).
  • Franconi R, Di Bonito P, Dibello F et al. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res.62(13), 3654–3658 (2002).
  • Indrova M, Bubenik J, Simova J et al. Therapy of HPV 16-associated carcinoma with dendritic cell-based vaccines: in vitropriming of the effector cell responses by DC pulsed with tumour lysates and synthetic RAHYNIVTF peptide. Int. J. Mol. Med.7(1), 97–100 (2001).
  • Bubeník J. Animal models for development of therapeutic HPV16 vaccines (review). Int. J. Oncol.20(1), 207–212 (2002).
  • Stewart TJ, Smyth MJ, Fernando GJ, Frazer ICH, Leggatt GR. Inhibition of early tumor growth requires Jα18-positive (natural killer T) cells. Cancer Res.63(12), 3058–3060 (2003).
  • Connor ME, Stern PL. Loss of MHC class 1 expression in cervical carcinomas. Int. J. Cancer46(6), 1029–1034 (1990).
  • Fowler N, Frazer IH. Mutations in TAP genes are common in cervical carcinomas. Gynaecol. Oncol.92(3), 914–921 (2004).
  • Han R, Cladel NM, Reed CA et al. DNA vaccination prevents and/or delays carcinoma development of papillomavirus-induced skin papillomas on rabbits. J. Virol.74(20), 9712–9716 (2000).
  • Klencke B, Matijevic M, Urban RG et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin. Cancer Res.8(5), 1028–1037 (2002).
  • Garcia F, Petry KU, Muderspach L et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet. Gynecol.103(2), 317–326 (2004).
  • Borysiewicz LK, Fiander A, Nimako M et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet347(9014), 1523–1527 (1996).
  • Kaufmann AM, Stern PL, Rankin EM et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin. Cancer Res.8(12), 3676–3685 (2002).
  • Baldwin PJ, van der Burg SH, Boswell CM et al. Vaccinia-expressed human papillomavirus 16 and 18 E6 and E7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin. Cancer Res.9(14), 5205–5213 (2003).
  • Davidson EJ, Boswell CM, Sehr P et al. Immunological and clinical responses in women with vulval intraepithelial neoplasia with a vaccinia virus encoding HPV 16/18 oncoproteins. Cancer Res.63(18), 6032–6041 (2003).
  • Corona Gutierrez CM, Tinoco A, Navarro T et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum. Gene Ther.15(5), 421–431 (2004).
  • Liu DW, Tsao YP, Kung JT et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J. Virol.74(6), 2888–2894 (2000).
  • Cheng WF, Hung CF, Hsu KF et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum. Gene Ther.13(4), 553–568 (2002).
  • Jabbar IA, Fernando GJ, Saunders N et al. Immune responses induced by BCG recombinant for human papillomavirus L1 and E7 proteins. Vaccine18(22), 2444–2453 (2000).
  • Ressing ME, van Driel WJ, Brandt RM et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J. Immunother.23(2), 255–266 (2000).
  • van Driel WJ, Ressing ME, Kenter GG et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a Phase I–II trial. Eur. J. Cancer35(6), 946–952 (1999).
  • Muderspach L, Wilczynski S, Roman L et al. A Phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin. Cancer Res.6(9), 3406–3416 (2000).
  • Hallez S, Simon P, Maudoux F et al. Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunol. Immunother.53(7), 642–650 (2004).
  • Goldstone SE, Palefsky JM, Winnett MT, Neefe JR. Activity of HspE7, a novel immunotherapy, in patients with anogenital warts. Dis. Colon Rectum45(4), 502–507 (2002).
  • Palefsky JM, Berry JM, Jay N et al. A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS20(8), 1151–1155 (2006).
  • Frazer IH, Quinn M, Nicklin JL et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine23(2), 172–181 (2004).
  • Derkay CS, Smith RJ, McClay J et al. HspE7 treatment of pediatric recurrent respiratory papillomatosis: final results of an open-label trial. Ann. Otol. Rhinol. Laryngol.114(9), 730–737 (2005).
  • Nonn M, Schinz M, Zumbach K et al. Dendritic cell-based tumor vaccine for cervical cancer I: in vitro stimulation with recombinant protein-pulsed dendritic cells induces specific T cells to HPV16 E7 or HPV18 E7. J. Cancer Res. Clin. Oncol.129(9), 511–520 (2003).
  • Ferrara A, Nonn M, Sehr P et al. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J. Cancer Res. Clin. Oncol.129(9), 521–530 (2003).
  • Santin AD, Bellone S, Gokden M, Cannon MJ, Parham GP. Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer. N. Engl. J. Med.346(22), 1752–1753 (2002).
  • Kim TW, Hung CF, Boyd D et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J. Immunol.171(6), 2970–2976 (2003).
  • Schreckenberger C, Kaufmann AM. Vaccination strategies for the treatment and prevention of cervical cancer. Curr. Opin. Oncol.16(5), 485–491 (2004).
  • Link BK, Ballas ZK, Weisdorf D et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother.29(5), 558–568 (2006).
  • Franconi R, Venuti A. HPV vaccines in plants: an appetizing solution to control infection and associated cancers. In: Papillomavirus Research. From Natural History to Vaccines and Beyond. Campo MS (Ed.), Caister Academic Press, Norfolk, UK 357–372 (2006).
  • Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J. Virol.77(17), 9211–9220 (2003).
  • Warzecha H, Mason HS, Lane C et al. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol.77(16), 8702–8711 (2003).
  • Massa S, Franconi R, Brandi R et al. Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine25(16), 3018–3021(2007).
  • van der Burg SH, Kwappenberg KM, O’Neill T et al. Pre-clinical safety and efficacy of TA–CIN, a recombinant HPV16 L2E6E7 fusion protein vaccine, in homologous and heterologous prime-boost regimens. Vaccine19(27), 3652–3660 (2001).
  • Davidson EJ, Faulkner RL, Sehr P et al. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7). Vaccine22(21–22), 2722–2729 (2004).
  • Fiander AN, Tristram AJ, Davidson EJ et al. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter Phase II trial. Int. J. Gynecol. Cancer16(3), 1075–1081 (2006).
  • Greenstone HL, Nieland JD, deVisser KE et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA95(4), 1800–1805 (1998).
  • de Jong A, O’Neill T, Khan AY et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine20(29–30), 3456–3464 (2002).
  • Ferris RL. Progress in head and neck cancer immunotherapy: can tolerance and immune suppression be reversed? ORL J. Otorhinolaryngol. Relat. Spec.66(6), 332–340 (2004).
  • Maeda H, Kubo K, Sugita Y et al. DNA vaccine against hamster oral papillomavirus-associated oral cancer. J. Int. Med. Res.33(6), 647–653 (2005).
  • Johnston KB, Monteiro JM, Schultz LD et al. Protection of beagle dogs from mucosal challenge with canine oral papillomavirus by immunization with recombinant adenoviruses expressing codon-optimized early genes. Virology336(2), 208–218 (2005).
  • Mellin H, Friesland S, Lewensohn R, Dalianis T, Munck-Wikland E. Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. Int. J. Cancer89(3), 300–304 (2000).
  • Schwartz SR, Yueh B, McDougall JK, Daling JR, Schwartz SM. Human papillomavirus infection and survival in oral squamous cell cancer: a population-based study. Otolaryngol. Head Neck Surg.125(1), 1–9 (2001).
  • Badaracco G, Rizzo C, Mafera B et al. Molecular analyses and prognostic relevance of HPV in head and neck tumours. Oncol. Rep.17(4), 931–940 (2007).
  • Christensen ND, Han R, Cladel NM, Pickel MD. Combination treatment with intralesional cidofovir and viral-DNA vaccination cures large cottontail rabbit papillomavirus-induced papillomas and reduces recurrences. Antimicrob. Agents Chemother.45(4), 1201–1209 (2001).
  • Visser J, van Baarle D, Hoogeboom BN et al. Enhancement of human papilloma virus type 16 E7 specific T cell responses by local invasive procedures in patients with (pre)malignant cervical neoplasia. Int. J. Cancer118(10), 2529–2537 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.