1,920
Views
13
CrossRef citations to date
0
Altmetric
Editorial

Cancer stem cells and the cell cycle: targeting the drive behind breast cancer

, , &
Pages 275-279 | Published online: 10 Jan 2014

References

  • Vermeulen L, Sprick MR, Kemper K, Stassi G, Medema JP. Cancer stem cells – old concepts, new insights. Cell Death Differ.15(6), 947–958 (2008).
  • Ponti D, Costa A, Zaffaroni N et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65(13), 5506–5511 (2005).
  • Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature367(6464), 645–648 (1994).
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100(7), 3983–3988 (2003).
  • Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature432(7015), 396–401 (2004).
  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65(23), 10946–10951 (2005).
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445(7123), 106–110 (2007).
  • Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun.351(4), 820–824 (2006).
  • Yin S, Li J, Hu C et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int. J. Cancer120(7), 1444–1450 (2007).
  • Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ.15(3), 504–514 (2008).
  • Uchida N, Buck DW, He D et al. Direct isolation of human central nervous system stem cells. Proc. Natl Acad. Sci. USA97(26), 14720–14725 (2000).
  • Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu. Rev. Med.58, 267–284 (2007).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445(7123), 111–115 (2007).
  • Neganova I, Lako M. G1 to S phase cell cycle transition in somatic and embryonic stem cells. J. Anat.213(1), 30–44 (2008).
  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science298(5593), 601–604 (2002).
  • Kohlmaier A, Edgar BA. Proliferative control in Drosophila stem cells. Curr. Opin. Cell. Biol.20(6), 699–706 (2008).
  • Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1–S transition and promote rapid proliferation. Nat. Genet.40(12), 1478–1483 (2008).
  • Yu Z, Wang C, Wang M et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J. Cell. Biol.182(3), 509–517 (2008).
  • Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res.10(2), R25 (2008).
  • Corti S, Locatelli F, Papadimitriou D et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells24(4), 975–985 (2006).
  • Hess DA, Meyerrose TE, Wirthlin L et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood104(6), 1648–1655 (2004).
  • Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1(5), 555–567 (2007).
  • Vassilopoulos A, Wang RH, Petrovas C, Ambrozak D, Koup R, Deng CX. Identification and characterization of cancer initiating cells from BRCA1 related mammary tumors using markers for normal mammary stem cells. Int. J. Biol. Sci.4(3), 133–142 (2008).
  • Ambler CA, Maatta A. Epidermal stem cells: location, potential and contribution to cancer. J. Pathol.217(2), 206–216 (2009).
  • Stingl J, Eirew P, Ricketson I et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006).
  • Kozar K, Ciemerych MA, Rebel VI et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell118(4), 477–491 (2004).
  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: cyclin D1: normal and abnormal functions. Endocrinology145(12), 5439–5447 (2004).
  • Cheng T, Rodrigues N, Shen H et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science287(5459), 1804–1808 (2000).
  • Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. J. Cell Biochem.97(2), 261–274 (2006).
  • Missero C, Di Cunto F, Kiyokawa H, Koff A, Dotto GP. The absence of p21Cip1/WAF1 alters keratinocyte growth and differentiation and promotes ras-tumor progression. Genes Dev.10(23), 3065–3075 (1996).
  • Martin-Caballero J, Flores JM, Garcia-Palencia P, Serrano M. Tumor susceptibility of p21Waf1/Cip1-deficient mice. Cancer Res.61(16), 6234–6238 (2001).
  • Bearss DJ, Lee RJ, Troyer DA, Pestell RG, Windle JJ. Differential effects of p21WAF1/CIP1 deficiency on MMTV-ras and MMTV-myc mammary tumor properties. Cancer Res.62(7), 2077–2084 (2002).
  • van Os R, Kamminga LM, Ausema A et al. A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells25(4), 836–843 (2007).
  • Choudhury AR, Ju Z, Djojosubroto MW et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet.39(1), 99–105 (2007).
  • Hulit J, Lee RJ, Li Z et al. p27Kip1 repression of ErbB2-induced mammary tumor growth in transgenic mice involves Skp2 and Wnt/β-catenin signaling. Cancer Res.66(17), 8529–8541 (2006).
  • Besson A, Hwang HC, Cicero S et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev.21(14), 1731–1746 (2007).
  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev.18(8), 862–876 (2004).
  • Kouvaraki M, Gorgoulis VG, Rassidakis GZ et al. High expression levels of p27 correlate with lymph node status in a subset of advanced invasive breast carcinomas: relation to E-cadherin alterations, proliferative activity, and ploidy of the tumors. Cancer94(9), 2454–2465 (2002).
  • Ghiaur G, Lee A, Bailey J, Cancelas JA, Zheng Y, Williams DA. Inhibition of RhoA GTPase activity enhances hematopoietic stem and progenitor cell proliferation and engraftment. Blood108(6), 2087–2094 (2006).
  • Li Z, Jiao X, Wang C et al. Cyclin D1 induction of cellular migration requires p27Kip1. Cancer Res.66(20), 9986–9994 (2006).
  • Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev.22(4), 463–475 (2008).
  • Wang C, Li Z, Lu Y et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Natl Acad. Sci. USA103(31), 11567–11572 (2006).
  • Ravandi F, Estrov Z. Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin. Cancer Res.12(2), 340–344 (2006).
  • Sridhar J, Pattabiraman N, Pestell RG. CDK Inhibitors as Anticancer Agents. In: Enzyme Inhibitors. Yue E, Smith PJ (Eds.) CRC Press, FL, USA (2005).
  • Li L, Xie T. Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol.21, 605–631 (2005).
  • Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature414(6859), 98–104 (2001).
  • Yin T, Li L. The stem cell niches in bone. J. Clin. Invest.116(5), 1195–1201 (2006).
  • Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev.22(5), 559–574 (2008).
  • Katiyar S, Jiao X, Wagner E, Lisanti MP, Pestell RG. Somatic excision demonstrates c-Jun induces cellular migration and invasion through induction of stem cell factor. Mol. Cell Biol.27(4), 1356–1369 (2007).
  • Li L, Neaves WB. Normal stem cells and cancer stem cells: the niche matters. Cancer Res.66(9), 4553–4557 (2006).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66(4), 1883–1890 (2006).
  • Bourguignon LY, Peyrollier K, Xia W, Gilad E. Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J. Biol. Chem.283(25), 17635–17651 (2008).
  • Godar S, Ince TA, Bell GW et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell134(1), 62–73 (2008).
  • Cariati M, Naderi A, Brown JP et al. α-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int. J. Cancer122(2), 298–304 (2008).
  • Platt VM, Szoka FC Jr. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol. Pharm.5(4), 474–486 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.