460
Views
181
CrossRef citations to date
0
Altmetric
Review

Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy

, , , , , , , & show all
Pages 331-356 | Published online: 10 Jan 2014

References

  • Schlessinger J. Cell signalling by receptor tyrosine kinases. Cell103, 211–225 (2000).
  • Kolibaba KS, Druker BJ. Protein kinases and cancer. Biochim. Biophys. Acta1333, F217–F248 (1997).
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature411, 355–365 (2001).
  • Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene21, 3314–3333 (2002).
  • Morris SW, Kirstein MN, Valentine MB et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science263, 1281–1284 (1994).
  • Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S. Hyperphosphorylation of a novel 80 kDa protein tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene9, 1567–1574 (1994).
  • Mathew P, Morris SW, Kane JR et al. Localization of the murine homolog of the anaplastic lymphoma kinase (Alk) gene on mouse chromosome 17. Cytogenet. Cell. Genet.70, 143–144 (1995).
  • Pulford K, Mason DY. CD246 Antigen. Leucocyte Typing VII. In: White Cell Differentiation Antigens. Mason DY et al. (Eds). Oxford University Press, Oxford, UK (2002).
  • Kaneko Y, Frizzera G, Edamura S et al. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. Blood73, 806–813 (1989).
  • Le Beau MM, Bitter MA, Larson RA et al. The t(2;5)(p23;q35): a recurring chromoso mal abnormality in Ki-1-positive anaplastic large cell lymphoma. Leukemia3, 866–870 (1989).
  • Rimokh R, Magaud JP, Berger F et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br. J. Haematol.71, 31–36 (1989).
  • Bitter MA, Franklin WA, Larson RA et al. Morphology in Ki-1(CD30)-positive non-Hodgkin’s lymphoma is correlated with clinical features and the presence of a unique chromosomal abnormality, t(2;5)(p23;q35). Am. J. Surg. Pathol.14, 305–316 (1990).
  • Mason DY, Bastard C, Rimokh R et al. CD30-positive large cell lymphomas (‘Ki-1 lymphoma’) are associated with a chromosomal translocation involving 5q35. Br. J. Haematol.74, 161–168 (1990).
  • Sandlund JT, Pui CH, Sandlund JT et al. Clinicopathlogic features and treatment outcome of chidren with large cell lymphoma and the t(2;5)(p23;q35). Blood84, 2467–2471 (1994).
  • Kadin ME, Morris SW. The t(2;5) in human lymphomas. Leuk. Lymphoma29, 249–256 (1998).
  • Iwahara T, Fujimoto J, Wen D et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene14, 439–449 (1997).
  • Morris SW, Naeve C, Mathew P et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene14, 2175–2188 (1997).
  • Loren CE, Scully A, Grabbe C et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells6, 531–544 (2001).
  • Pulford K, Lamant L, Morris SW et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)–ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood89, 1394–1404 (1997).
  • Lamant L, Pulford K, Bischof D et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am. J. Pathol.156, 1711–1721 (2000).
  • Stoica GE, Kuo A, Aigner A et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J. Biol. Chem.276, 16772–16779 (2001).
  • Stoica GE, Kuo A, Powers C et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem.277, 35990–35999 (2002).
  • Tartari CJ, Gunby RH, Coluccia AM et al. Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymhoma kinase. J. Biol. Chem.283, 3743–3750 (2008).
  • Degoutin J, Vigny M, Gouzi JY. ALK activation induces Shc and FRS2 recruitment: signaling and phenotypic outcomes in PC12 cells differentiation. FEBS Lett.581, 727–734 (2007).
  • Turner SD, Yeung D, Hadfield K, Cook SJ, Alexander DR. The NPM–ALK tyrosine kinase mimics TCR signaling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. Cell. Signal.19, 740–747 (2007).
  • Bai RY, Dieter P, Peschel C, Morris SW, Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-γ to mediate its mitogenicity. Mol. Cell. Biol.18, 6951–6961 (1998).
  • Vernersson E, Khoo NKS, Henriksson ML, Roos G, Palmer RH, Hallberg B. Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Exp. Patterns6, 448–461 (2006).
  • Falini B, Pileri S, Zinzani PL et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood93, 2697–2706 (1999).
  • Englund C, Loren CE, Grabbe C, Deleuil F, Varshney GK, Palmer RH. Jeb signals via the DAlk receptor tyrosine kinase to drive visceral muscle fusion. Nature425, 512–516 (2003).
  • Lee H-H, Norris A, Weiss JB, Frasch M. Drosophila jelly belly signals through the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature425, 507–512 (2003).
  • Loren CE, Englund C, Grabbe C, Hallberg B, Hunter T, Palmer RH. A crucial role for the anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO J.4, 1–6 (2003).
  • Liao EH, Hung W, Abrams B, Zhen M. An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature430, 345–350 (2004).
  • Bazigou E, Apitz H, Johansson J et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell128, 961–975 (2007).
  • Varshney GK, Palmer RH. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut. Biochem. Biophys. Res. Commun.351, 839–846 (2006).
  • Bilsland JG, Wheeldon A, Mead A et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology33, 685–700 (2008).
  • Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science302, 1760–1765 (2003)
  • Santarelli L, Saxe M, Gross C et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003).
  • Bruel-Jungerman E, Laroche S, Rampon C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur. J. Neurosci.21, 513–521 (2005).
  • Kunugi H, Hashimoto R, Okada T et al. Possible association between nonsynonymous polymorphisms of the anaplastic lymphoma kinase (ALK) gene and schizophrenia in a Japanese population. J. Neural. Transm.113, 1569–1573 (2006).
  • Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann. NY Acad. Sci.766, 442–458 (1995).
  • Li YS, Milner PG, Chauhan AK et al. Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science250, 1690–1694 (1990).
  • Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A. Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J. Biol. Chem.267, 25889–25897 (1992)
  • Wellstein A, Fang WJ, Khatri A et al. A heparin-binding growth factor secreted from breast cancer cells homologous to a developmentally regulated cytokine. J. Biol. Chem.267, 2582–2587 (1992).
  • Chauhan AK, Li YS, Deuel TF. Pleiotrophin transforms NIH-3T3 cells and induces tumors in nude mice. Proc. Natl Acad. Sci. USA90, 679–682 (1993).
  • Schulte AM, Wellstein A. Pleiotrophin and related molecules. In: Tumour Angiogenesis. Bicknell R, Lewis CM, Ferrara N (Eds). Oxford University Press, NY, USA (1997).
  • Kadomatsu K, Huang RP, Suganuma T, Murata F, Muramatsu T. A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in a spatially and temporally controlled manner during mouse embryogenesis. J. Cell. Biol.110, 607–616. (1990).
  • Kadomatsu K, Muramatsu T. Midkine and pleiotrophin in neural development and cancer. Cancer Lett.204, 127–143 (2004).
  • Ichihara-Tanaka K, Oohira A, Rumsby M, Muramatsu T. Neuroglycan C is a novel midkine receptor involved in process elongation of oligodendroglial precursor-like cells. J. Biol. Chem.281, 30857–30864 (2006).
  • Kojima S, Inui T, Muramatsu H et al. Dimerization of midkine by tissue transglutaminase and its functional implication. J. Biol. Chem.272, 9410–9416 (1997).
  • Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M. A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine. Involvement of arginine 78 or midkine in the high affinity binding to PTP-ζ. J. Biol. Chem.274, 12474–12479 (1999).
  • Matsubara S, Take M, Pedraza C, Muramatsu T. Mapping and characterization of a retinoic acid-responsive enhancer of midkine, a novel heparin-binding growth/differentiation factor with neurotrophic activity. J. Biochem. (Tokyo)115, 1088–1096 (1994).
  • Muramatsu T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumourigenesis. J. Biochem. (Tokyo)132, 359–371 (2002).
  • Muramatsu H, Zou K, Sakaguchi N, Ikematsu S, Sakuma S, Muramatsu T. LDL receptor-related protein as a component of the midkine receptor. Biochem. Biophys. Res. Commun.270, 936–941 (2000).
  • Muramatsu H, Zou P, Suzuki H et al. α4β1- and αβ1-integrins are functional receptors for midkine, a heparin-binding growth factor. J. Cell. Sci.117, 5404–5415 (2004).
  • Obata Y, Kikuchi S, Lin Y, Yagyu K, Muramatsu T, Kumai H, Tokyo Research Group on Prevention of Gastric Cancer. Serum midkine concentrations and gastric cancer. Cancer Sci.96, 54–56 (2005).
  • Salama RH, Muramatsu H, Zou P, Okayama M, Muramatsu T. Midkine, a heparin-binding growth factor, produced by the host enhances metastasis of Lewis lung carcinoma. Cancer Lett.233, 16–20 (2006).
  • Zou P, Muramatsu H, Miyata T, Muramatsu T. Midkine, a heparin-binding growth factor, is expressed in neural precursor cells and promotes their growth. J. Neurochem.99, 1470–1479 (2006).
  • O’Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res.56, 2515–2518 (1996).
  • Weiss JB, Suyama KL, Lee HH, Scott MP. Jelly belly: a Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation. Cell107, 387–398 (2001).
  • Englund C, Birve A, Falileeva L, Grabbe C, Palmer RH. Miple1 and miple2 encode a family of MK/PTN homologues in Drosophila melanogaster. Dev. Genes Evol.216, 10–18 (2006).
  • Bowden ET, Stoica GE, Wellstein A. Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J. Biol. Chem.277, 35862–35868 (2002).
  • Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J. Biol. Chem.277, 14153–14158 (2002).
  • Czubayko F, Schulte AM, Berchem GJ, Wellstein A. Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc. Natl Acad. Sci. USA93, 14753–14758 (1996).
  • Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proc. Natl Acad. Sci. USA93, 14759–14764 (1996).
  • Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R. An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res.57, 1814–1819 (1997).
  • Beecken WD, Kramer W, Joans D. New molecular mediators in tumor angiogenesis. J. Cell. Mol. Med.4, 262–269 (2000).
  • Christman KL, Fang O, Kim AJ et al. Pleiotrophin induces formation of functional neovasculature in vivo. Biochem. Biophys. Res. Commun.332, 1146–1152 (2005).
  • Mikelis C, Koutsioumpa M, Papadimitriou E. Pleiotrophin as a possible new target for angiogenesis-related diseases and cancer. Recent Patents Anticancer Drug Discov.2, 175–186 (2007).
  • Bernard-Pierrot I, Delbe J, Rouet V et al. Dominant negative effectors of heparin affin regulatory peptide (HARP) angiogenic and transforming activities. J. Biol. Chem.277, 32071–32077 (2002).
  • Dirks WG, Fahnrich S, Lis Y, Becker E, MacLeod RA, Drexler HG. Expression and functional analysis of the anaplastic lymphoma kinase (ALK) gene in tumor cell lines. Int. J. Cancer100, 49–56 (2002).
  • Moog-Lutz C, Degoutin J, Gouzi JY et al. Activation and inhibiton of anaplastic lymphoma kinase receptor tyrosine kinase activity by monoclonal antibodies and absence of agonist activity of pleiotrophin. J. Biol. Chem.280, 26039–26048 (2005).
  • Mathivet T, Mazot P, Vigny M. In contrast to agonist monoclonal antibodies, both C-terminal truncated form and full length form of pleiotrophin failed to activate vertebrate ALK (anaplastic lymphoma kinase). Cell Signal.19, 2434–2443 (2007).
  • Meng K, Rodriguez-Pena A, Dimitrov T et al. Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase β/ζ. Proc. Natl Acad. Sci. USA97, 2603–2608 (2000).
  • Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M. 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ/RPTPβ, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J. Biol. Chem.271, 21446–21452 (1996).
  • Raulo E, Julkunen I, Merenmies J, Pihlaskari R, Rauvala H. Secretion and biological activities of heparin-binding growth-associated molecule. Neurite outgrowth-promoting and mitogenic actions of the recombinant and tissue-derived protein. J. Biol. Chem.267, 11408–11416 (1992).
  • Raulo E, Chernousov MA, Carey DJ, Nolo R, Rauvala H. Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM). Identification as N-syndecan (syndecan-3). J. Biol. Chem.269, 12999–13004 (1994).
  • Hida H, Jung CG, Wu CZ et al. Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur. J. Neurosci.17, 2127–2134 (2003).
  • Furuta M, Shiraishi T, Okamoto H, Mineta T, Tabuchi K, Shiwa M. Identification of pleiotrophin in conditioned medium secreted from neural stem cells by SELDI-TOF and SELDI-tandem mass spectrometry. Brain Res. Dev. Brain Res.152, 189–197 (2004).
  • Landgraf P, Wahle P, Pape HC, Gundelfinger ED, Kreutz MR. The survival-promoting peptide Y-P30 enhances binding of pleiotrophin to syndecan-2 and -3 and supports its neuritogenic activity. J. Biol. Chem.283, 25036–25045 (2008).
  • Lu KV, Jong KA, Kim GY et al. Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J. Biol. Chem.280, 26953–26964 (2005).
  • Perez-Pinera P, Zhang W, Chang Y, Vega JA, Deuel TF. Anaplastic lymphoma kinase is activated through the pleiotrophin/receptor protein-tyrosine phosphatase β/ζ signaling pathway: an alternative mechanism of receptor tyrosine kinase activation. J. Biol. Chem.282, 28683–28690 (2007).
  • Perez-Pinera P, Berenson JR, Deuel TF. Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr. Opin. Hematol.15, 210–214 (2008).
  • Miyake I, Hakomori Y, Shinohara A et al. Activation of anaplastic lymphoma kinase is responsible for hyperphosphorylation of ShcC in neuroblastoma cell lines. Oncogene21, 5823–5834 (2002).
  • Osajima-Hakomori Y, Miyake I, Ohira M, Nakagawara A, Nakagawa A, Sakai R. Biological role of anaplastic lymphoma kinase in neuroblastoma. Am. J. Pathol.167, 213–222 (2005).
  • Miyake I, Hakomori Y, Misu Y et al. Domain-specific function of ShcC docking protein in neuroblastoma cells. Oncogene24, 3206–3215 (2005).
  • Shao CK, Su ZL, Feng ZY, Rao HL, Tang LY. Significance of ALK gene expression in neoplasms and normal tissues. Ai Zheng21, 58–62 (2002).
  • Grzelinski M, Bader N, Czubayko F, Aigner A. Ribozyme-targeting reveals the rate-limiting role of pleiotrophin in glioblastoma. Int. J. Cancer117, 942–951 (2005).
  • Falini B, Bigerna B, Fizzotti M et al. ALK expression defines a distinct group of T/null lymphomas with a wide morphological spectrum. Am. J. Pathol.153, 875–886 (1998).
  • Cessna MH, Zhou H, Sanger WG et al. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod. Pathol.15, 931–938 (2002).
  • Pillay K, Govender D, Chetty R. ALK protein expression in rhabdomyosarcomas. Histopathology41, 461–467 (2002).
  • Li X-Q, Hisaoka M, Shi D-R, Zhu X-Z, Hashimoto H. Expression of anaplastic lymphoma kinase in soft tissue tumors: an immunohistochemical and molecular study of 249 cases. Hum. Pathol.35, 711–721 (2004).
  • Perez-Pinera P, Chang Y, Astudillo A, Mortimer J, Deuel TF. Anaplastic lymphoma kinase in expressed in different subtypes of human breast cancer. Biochem. Biophys. Res. Commun.358, 399–403 (2007).
  • Perez-Pinera P, Garcia-Suarez O, Menendez-Rodriguez P et al. The receptor protein tyrosine phosphatase (RPTP)β/ζ is expressed in differerent subtypes of human breast cancer. Biochem. Biophys. Res. Commun.362, 5–10 (2007).
  • Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Pediatr. Clin. North Am.55, 97–120 (2008).
  • Matthay KK, Villablanca JG, Seeger RC et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N. Engl. J. Med.341, 1165–1173 (1999).
  • George RE, Attiyeh EF, Li S et al. Genome-wide analysis of neuroblastomas using high-density single nucleotide polymorphism arrays. PLoS ONE2, e255 (2007).
  • Hurley SP, Clary DO, Copie V, Lefcort F. Anaplastic lymphoma kinase is dynamically expressed on subsets of motor neurons and in the peripheral nervous system. J. Comp. Neurol.495, 202–212 (2006).
  • Nakagawara A, Milbrandt J, Muramatsu T et al. Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res.55, 1792–1797 (1995).
  • Ikematsu S, Nakagawara A, Nakamura Y et al. Correlation of elevated level of blood midkine with poor prognostic factors of human neuroblastomas. Br. J. Cancer88, 1522–1526 (2003).
  • Barthlen W, Flaadt D, Girgert R et al. Significance of heparin-binding growth factor expression on cells of solid pediatric tumors. J. Pediatr. Surg.38, 1296–1304 (2003).
  • Calvet L, Geoerger B, Regairaz M et al. Pleiotrophin, a candidate gene for poor tumor vasculature and in vivo neuroblastoma sensitivity to irinotecan. Oncogene25, 3150–3159 (2006).
  • Sakai R, Henderson JT, O’Bryan JP, Elia AJ, Saxton TM, Pawson T. The mammalian ShcB and ShcC phosphotyrosine docking proteins function in the maturation of sensory and sympathetic neurons. Neuron28, 819–833 (2000).
  • George RE, Sanda T, Hanna M et al. Activating mutations in the ALK tyrosine kinase provide a therapeutic target in neuroblastoma. Nature455, 975–978 (2008).
  • The International HapMap Consortium. The International HapMap Project. Nature426, 789–796 (2003).
  • McDermott U, Iafrate AJ, Gray NS et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res.68, 3389–3395 (2008).
  • Mosse YP, Laudenslager M, Longo L et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature455, 930–935 (2008).
  • Janoueix-Lerosey I, Lequin D, Brugieres L et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature455, 967–970 (2008).
  • Chen Y, Takita J, Choi YL et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature455, 971–974 (2008).
  • Delsol G, Lamant L, Mariame B et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2;5 translocation. Blood89, 1483–1490 (1997).
  • Hannah AL. Kinases as drug discovery targets in hematologic malignancies. Curr. Mol. Med.5, 625–642 (2005).
  • Bischof D, Pulford K, Mason DY, Morris SW. Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol. Cell. Biol.17, 2312–2325 (1997).
  • Mason DY, Pulford KA, Bischof D et al. Nucleolar localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. Cancer Res.58, 1057–1062 (1998).
  • Fujimoto J, Shiota M, Iwahara T et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc. Natl Acad. Sci. USA93, 4181–4186 (1996).
  • Rosenwald A, Ott G, Pulford K et al. t(1;2)(q21;p23) and t(2;3)(p23;q21): two novel variant translocations of the t(2;5)(p23;q35) in anaplastic large cell lymphoma. Blood94, 362–364 (1999).
  • Pulford K, Falini B, Cordell J et al. Biochemical detection of novel anaplastic lymphoma kinase proteins in tissue sections of anaplastic large cell lymphoma. Am. J. Pathol.154, 1657–1663 (1999).
  • Ma Z, Cools J, Marynen P et al. Inv(2) (p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood95, 2144–2149 (2000).
  • Ma Z, Hill DA, Collins MH et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer37, 98–105 (2003).
  • Tort F, Pinyol M, Pulford K et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab. Invest.81, 419–426 (2001).
  • Trinei M, Lanfrancone L, Campo E et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC–ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res.60, 793–798 (2000).
  • Li R, Morris SW. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. Med. Res. Rev.28, 372–412 (2008).
  • Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer8, 11–23 (2008).
  • Marzec M, Kasprzychka M, Liu X et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene26, 5606–5614 (2007).
  • Leventaki V, Drakos E, Medeiros LJ et al. NPM–ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJUN signaling in anaplastic large-cell lymphoma. Blood110, 1621–1630 (2007).
  • Voena C, Conte C, Ambrogio C et al. The tyrosine phosphatase Shp2 interacts with NPM–ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res.67, 4278–4286 (2007).
  • Galietta A, Bunby RH, Redaelli S et al. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma. Blood110, 2600–2609 (2007).
  • Sjostrom C, Seiler C, Crockett DK, Tripp SR, Elenitoba Johnson KS, Lim MS. Global proteome profiling of NPM/ALK-positive anaplastic large cell lymphoma. Exp. Hematol.35, 1240–1248 (2007).
  • Staber PB, Vesely P, Haq N et al. The oncoprotein NPM–ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood110, 3374–3383 (2007).
  • Zhang Q, Wang HY, Liu X, Wasik MA. STAT5A is epigenetically silenced by the tyrosine kinase NPM1–ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1–ALK expression. Nat. Med.13, 1341–1348 (2007).
  • Bohling SD, Jenson SD, Crockett DK, Schumacher JA, Elenitoba-Johnson KS, Lim MS. Analysis of gene expression profile of TPM3–ALK positive anaplastic large cell lymphoma reveals overlapping and unique patterns with that of NPM–ALK positive anaplastic large cell lymphoma. Leuk. Res.32, 383–393 (2008).
  • Cho-Vega JH, Vega F, Medeiros LJ. An attractive therapeutic target, mTOR pathway, in ALK+ anaplastic large cell lymphoma. Adv. Anat. Pathol.15, 105–112 (2008).
  • Colomba A, Courilleau D, Ramel D et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM–ALK signaling in anaplastic large cell lymphomas. Oncogene27, 2728–2736 (2008).
  • Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci.99, 1319–1325 (2008).
  • Coronas S, Lagarrigue F, Ramel D et al. Elevated levels of PtdIns5P in NPM–ALK–transformed cells: implication of PIKfyve. Biochem. Biophys. Res. Commun.372, 351–355 (2008).
  • Pulford K, Roberton HM, Jones M. Antibody techiques used in the study of anaplastic lymphoma kinase-positive ALCL. Methods Mol. Med.115, 271–294 (2005).
  • Benharroch D, Meguerian-Bedoyan Z, Lamant L et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood91, 2076–2084 (1998).
  • Kinney MC, Kadin ME. The pathologic and clinical spectrum of anaplastic large cell lymphoma and correlation with ALK gene dysregulation. Am. J. Clin. Pathol.111, S56–S67 (1999).
  • Morris SW, Xue L,Ma Z, Kinney MC. Alk+ CD30+ lymphomas: a distinct molecular genetic subtype of non-Hodgkin’s lymphoma. Br. J. Haematol.113, 275–295 (2001).
  • Gascoyne RD, Aoun P, Wu D et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood93, 3913–3921 (1999).
  • Falini B, Pulford K, Pucciarini A et al. Lymphomas expressing ALK fusion protein(s) other than NPM–ALK. Blood94, 3509–3515 (1999).
  • Haralambieva E, Pulford KA, Lamant L et al. Anaplastic large-cell lymphomas of B-cell phenotype are anaplastic lymphoma kinase (ALK) negative and belong to the spectrum of diffuse large B-cell lymphomas. Br. J. Haematol.109, 584–591 (2000).
  • Delsol G, Ralfkaier E, Stein H, Wright D, Jaffe ES. Anaplastic large cell lymphoma. Pathology and genetics. In: World Health Organisation of Tumours. Tumours of Haematopoietic and Lymphoid Tissues. Jaffe E, Harris NL, Stein H et al. (Eds). IACR, Lyon, France (2001).
  • Brugieres L, Deley MC, Pacquement H et al. CD30+ anaplastic large-cell lymphoma in children: analysis of 82 patients enrolled in two consecutive studies of the French Society of Pediatric Oncology. Blood92, 3591–3598 (1998).
  • Brugieres L, Quartier P, Le Deley MC et al. Relapses of childhood anaplastic large-cell lymphoma: treatment results in a series of 41 children – a report from the French Society of Pediatric Oncology. Ann. Oncol.11, 53–58 (2000).
  • Williams DM, Hobson R, Imeson J, Gerrard M, McCarthy K, Pinkerton CR. Anaplastic large cell lymphoma in childhood: analysis of 72 patients treated on The United Kingdom Children’s Cancer Study Group chemotherapy regimens. Br. J. Haematol.117, 812–820 (2002).
  • Savage KJ, Harris NL, Vose JM et al.; for the International Peripheral T-Cell Lymphoma Project. ALK-anaplastic large-cell lymphoma is clinically and immunophentoypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-cell Lymphoma Project. Blood111, 5496–5504 (2008).
  • Droc C, Cualing HD, Kadin ME. Need for an improved molecular/genetic classification for CD30+ lymphomas involving the skin. Cancer Control14, 124–132 (2007).
  • Kinnney MC, Jones D. Cutaneous T-cell and NK-cell lymphomas: the WHO-EORTC classification and the increasing recognition of specialized tumor types. Am. J. Clin. Pathol.127, 670–686 (2007).
  • Querfeld C, Kuzel TM, Guitart J, Rosen ST. Primary cutaneous CD30+ lymphoproliferative disorders: new insights into biology and therapy. Oncology21, 689–696 (2007).
  • Gascoyne RD, Lamant L, Martin-Subero JI et al. ALK-positive diffuse large B-cell lymphoma is associated with clathrin-ALK rearrangements: report of six cases. Blood102, 2568–2571 (2003).
  • Chikatsu N, Kojima H, Suzukawa K et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod. Pathol.16, 828–832 (2003).
  • De Paepe P, Baens M, van Krieken H et al. ALK activation by the CTLC-ALK fusion is a recurrent event in B-cell lymphoma. Blood102, 2638–2641 (2003).
  • Onciu M, Behm FG, Downing JR et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM–ALK fusion transcript: report of two cases. Blood102, 2642–2644 (2003).
  • Reichard KK, McKenna RW, Kroft SH. ALK-positive B-cell lymphoma: a report of three cases. Mod. Pathol.16, 250A (2003).
  • Reichard KK, McKenna RW, Kroft SH. ALK-positive diffuse large B-cell lymphoma: report of four cases and review of the literature. Mod. Pathol.20, 310–319 (2007).
  • Shinmura K, Kageyama S, Tao H et al. ALK+ histiocytosis: a novel type of systemic histiocytic proliferative disorder of early infancy. Blood112, 2965–2968 (2008).
  • Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res.59, 2776–2780 (1999).
  • Coffin CM, Patel A, Perkins S, Elenitoba–Johnson KS, Perlman E, Griffin CA. ALK1 and p80 expression and chromosomal rearrangements involving 2p23 in inflammatory myofibroblastic tumor. Mod. Pathol.14, 569–576 (2001).
  • Gleason BC, Hornick JL. Inflammatory myofibroblastic tumours: where are we now? J. Clin. Pathol.61, 428–437 (2008).
  • Cook JR, Dehner LP, Collins MH et al. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am. J. Surg. Pathol.25, 1364–1371 (2001).
  • Lawrence B, Perez-Atayde A, Hibbard MK et al. TPM3–ALK and TPM4–ALK oncogenes in inflammatory myofibroblastic tumors. Am. J. Pathol.157, 377–384 (2000).
  • Bridge JA, Kanamori M, Ma Z et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol.159, 411–415 (2001).
  • Cools J, Wlodarska I, Somers R et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer34, 354–362 (2002).
  • Panagopoulos I, Nilsson T, Domanski HA et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int. J. Cancer.118, 1181–1186 (2006).
  • Yousem SA, Shaw H, Cieply K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum. Pathol.32, 428–433 (2001).
  • Sirvent N, Hawkins AL, Moeglin D et al. ALK probe rearrangement in a t(2;11;2)(p23;p15;q31) translocation found in a prenatal myofibroblastic fibrous lesion: toward a molecular definition of an inflammatory myofibroblastic tumor family? Genes Chromosomes Cancer31, 85–90 (2001).
  • Chan JK, Cheuk W, Shimizu M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am. J. Surg. Pathol.25, 761–768 (2001).
  • Sigel JE, Smith TA, Reith JD, Goldblum JR. Immunohistochemical analysis of anaplastic lymphoma kinase expression in deep soft tissue calcifying fibrous pseudotumor: evidence of a late sclerosing stage of inflammatory myofibroblastic tumor? Ann. Diagn. Pathol.5, 10–14 (2001).
  • Chun YS, Wang L, Nascimento AG, Moir CR, Rodeberg DA. Pediatric inflammatory myofibroblastic tumor: anaplastic lymphoma kinase (ALK) expression and prognosis. Pediatr. Blood Cancer45, 796–801 (2005).
  • Mergan F, Jaubert F, Sauvat F et al. Inflammatory myofibroblastic tumor in children: clinical review with anaplastic lymphoma kinase, Epstein–Barr virus, and human herpesvirus 8 detection analysis. J. Ped. Surg.40, 1581–1586 (2005).
  • Montgomery EA, Shuster DD, Burkart AL et al. Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example of inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am. J. Surg. Pathol.30, 1502–1512 (2006).
  • Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am. J. Surg. Pathol.31, 509–520 (2007).
  • Swain RS, Tihan T, Horvai AE. Inflammatory myofibroblastic tumor of the central nervous system and its relationship to inflammatory pseudotumor. Hum. Pathol.39, 410–419 (2008).
  • Qui X, Montgomery E, Sun B. Inflammatory myofibroblastic tumor and low-grade myofibroblastic sarcoma: a comparative study of clinicopathologic features and further observations on the immunohistochemical profile of myofibroblasts. Hum. Pathol.39, 846–856 (2008).
  • Jazii FR, Najafi Z, Malekzadeh R et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of β tropomyosin expression in esophageal cancer. World J. Gastroenterol.12, 7104–7112 (2006).
  • Du X-L, Hu H, Lin D-C et al. Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J. Mol. Med.85, 863–875 (2007).
  • Aklilu M, Ilson DH. Targeted agents and esophageal cancer – the next step? Semin. Radiat. Oncol.17, 62–69 (2007).
  • Soda M, Choi YL, Enomoto M et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature448, 561–566 (2007).
  • Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131, 1190–1203 (2007).
  • Inamura K, Takeuchi K, Togashi Y et al. EML4–ALK fusion is linked to histological characteristics in a subset of lung cancers. J. Thorac. Oncol.3, 13–17 (2008).
  • Perner S, Wagner PL, Demichelis F et al. EML4–ALK fusion lung cancer: a rare acquired event. Neoplasia10, 298–302 (2008).
  • Shinmura K, Kageyama S, Tao H et al. EML4–ALK fusion transcripts, but no NPM–, TPM3–, CLTC–, ATIC–, or TFG–ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer61(2), 163–169 (2008).
  • Fukuyoshi Y, Inoue H, Kita Y, Utsunomiya T, Ishida T, Mori M. EML4–ALK fusion transcript is not found in gastrointestinal and breast cancers. Br. J. Cancer98, 1536–1539 (2008).
  • Koivunen JP, Mermel C, Zejnullahu K et al. EML4–ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin. Cancer Res.14, 4275–4283 (2008).
  • Choi YL, Takeuchi K, Soda M et al. Identification of novel isoforms of the EML4–ALK transforming gene in non-small cell lung cancer. Cancer Res.68, 4971–4976 (2008).
  • Wheatley-Price P, Shepherd FA. Epidermal growth factor receptor inhibitors in the treatment of lung cancer: reality and hopes. Curr. Opin. Oncol.20, 162–175 (2008).
  • Soda M, Takada S, Takeuchi K et al. A mouse model for EML4–ALK-positive lung cancer. Proc. Natl Acad. Sci. USA105, 19893–19897 (2008).
  • Buchdunger E, Zimmermann J, Mett H et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res.56(1), 100–104 (1996).
  • Druker BJ, Tamura S, Buchdunger E et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med.2(5), 561–566 (1996).
  • Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science289, 1938–1942 (2000).
  • Kantarjian H, Sawyers C, Hochhaus A et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N. Engl. J. Med.346(9), 645–652 (2002).
  • Talpaz M, Silver RT, Druker BJ et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a Phase 2 study. Blood99(6), 1928–1937 (2002).
  • van Oosterom AT, Judson I, Verweij J et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumors: a Phase I study. Lancet358(9291), 1421–1423 (2001).
  • Roumiantsev S, Shah NP, Gorre ME et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the abl kinase domain P-loop. Proc. Natl Acad. Sci. USA99(16), 10700–10705 (2000).
  • Chandu de Silva MV, Reid R. Gastrointestinal stromal tumors (GIST): C-kit mutations, CD117 expression, differential diagnosis and targeted cancer therapy with imatinib. Path. Oncol. Res.9(1), 13–19 (2003).
  • Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science305(5682), 399–402 (2004).
  • Lombardo LJ, Lee FY, Chen P et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2- (6-(4-(2-hydroxyethyl)- piperazin-1-yl)- 2-methylpyrimidin-4- ylamino)thiazole- 5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent anti-tumor activity in preclinical assays. J. Med. Chem.47(27), 6658–6661 (2004).
  • Abdelhalim A, Barcos M, Block AW et al. Remission of Philadelphia chromosome-positive central nervous system leukemia after dasatinib therapy. Leuk. Lymphoma48(5), 1053–1056 (2007).
  • Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukemia. Nat. Rev. Cancer7(5), 345–356 (2007).
  • Quintas-Cardama A, Kantarjian H, Cortes J. Flying under the radar: the new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov.6(10), 834–848 (2007).
  • Meric JB, Faivre S, Monnerat C et al. Zd 1839 “Iressa”. Bull. Cancer87(12), 873–876 (2000).
  • Hightower M. Erlotinib (OSI-774, Tarceva), a selective epidermal growth factor receptor tyrosine kinase inhibitor, in combination with chemotherapy for advanced non-small-cell lung cancer. Clin. Lung Cancer4(6), 336–338 (2003).
  • Baselga J, Albanell J. Targeting epidermal growth factor receptor in lung cancer. Curr. Oncol. Rep.4(4), 317–324 (2002).
  • Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J. Clin. Oncol.26, 1742–1751 (2008).
  • Perez-Soler R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin. Lung Cancer6(Suppl. 1), S20–S23 (2004).
  • Senderowicz AM, Johnson JR, Sridhara R, Zimmerman P, Justice R, Pazdur R. Erlotinib/gemcitabine for first-line treatment of locally advanced or metastatic adenocarcinoma of the pancreas. Oncology21(14), 1696–1706 (2007).
  • Ho QT, Kuo CJ. Vascular endothelial growth factor: biology and therapeutic applications. Int. J. Biochem. Cell Biol.39(7–8), 1349–1357 (2007).
  • Larkin JM, Eisen T. Kinase inhibitors in the treatment of renal cell carcinoma. Crit. Rev. Oncol. Hematol.60(3), 216–226 (2006).
  • Oudard S, George D, Medioni J, Motzer R. Treatment options in renal cell carcinoma: past, present and future. Ann. Oncol.18(Suppl. 10), 25–31 (2007).
  • Joensuu H. Sunitinib for imatinib-resistant GIST. Lancet368(9544), 1303–1304 (2006).
  • McDermott U, Sharma SV, Dowell L et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling. Proc. Natl Acad. Sciences USA104(50), 19936–19941 (2007).
  • Gunby RH, Ahmed S, Sottocornola R et al. Structural insights into the ATP binding pocket of the anaplastic lymphoma kinase by site-directed mutagenesis, inhibitor binding analysis, and homology modeling. J. Med. Chem.49(19), 5759–5768 (2006).
  • Gunby RH, Tartari CJ, Porchia F, Donella-Deana A, Scapozza L, Gambacorti-Passerini C. An enzyme-linked immunosorbent assay to screen for inhibitors of the oncogenic anaplastic lymphoma kinase. Haematologica90, 988–990 (2005).
  • Karaman MW, Herrgard S, Treiber DK et al. A quanti-tative analysis of kinase inhibitor selectivity. Nat. Biotechnol.26(1), 127–132 (2008).
  • Fuse E, Kuwabara T, Sparreboom A, Sausville EA, Figg WD. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J. Clin. Pharmacol.45, 394–403 (2005).
  • Bonvini P, Rosa HD, Vignes N, Rosolen A. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res.64, 3256–3264 (2004).
  • Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Younes A. The HSP90 inhibitor 17-AAG synergizes with doxorubicin and U0126 in anaplastic large cell lymphoma irrespective of ALK expression. Exp. Hematol.34, 1670–1679 (2006).
  • Turturro F, Arnold MD, Frist AY, Pulford K. Model of inhibition of the NPM–ALK kinase activity by herbimycin A. Clin. Cancer Res.8, 240–245 (2002).
  • Wan W, Albom MS, Lu L et al. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood107, 1617–1623 (2006).
  • Piva R, Pellegrino E, Mattioli M et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J. Clin. Invest.116, 3171–3182 (2006).
  • Li R, Xue L, Zhu T et al. Design and synthesis of 5-aryl-pyridone-carboxamides as inhibitors of anaplastic lymphoma kinase. J. Med. Chem.49(3), 1006–1015 (2006).
  • Galkin AV, Melnick JS, Kim S et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM–ALK. Proc. Natl. Acad. Sci. USA104(1), 270–275 (2007).
  • Christensen JG, Schreck R, Burrows J et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive anti-tumor activity in vivo. Cancer Res.63(21), 7345–7355 (2003).
  • Puri N, Khramtsov A, Ahmed S et al. A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenografts. Cancer Res.67, 3529–3534 (2007).
  • Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett.225, 1–26 (2005).
  • Knudsen BS, vande Woude G. Showering c-Met-dependent cancers with drugs. Curr. Opin. Genet. Dev.18, 87–96 (2008).
  • Cui JJ, Botrous I, Shen H et al. Structure based drug design for the discovery of clinical candidate PF-2341066 as potent and highly selective c-Met inhibitor. Presented at: 235th ACS National Meeting. New Orleans, LA, USA, 6–10 April 2008.
  • Zou HY, Li Q, Lee JH et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive anti-tumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Research67(9), 4408–4417 (2007).
  • Christensen JG, Zou HY, Arango EA et al. Cytoreductive anti-tumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther.6(12,Pt1), 3314–3322 (2007).
  • Weinberg LR, Albom MS, Angeles TS et al. Synthesis and SAR of 1,2,3,4-tetrahydro-pyrido[2,3-b]pyrazines as c-Met and ALK inhibitors. Presented at: 235th ACS National Meeting. New Orleans, LA, USA, 6–10 April 2008.
  • Wodarz D, Komarova NL. Emergence and prevention of resistance against small molecule inhibitors. Semin. Cancer Biol.15, 506–614 (2005).

Patents

  • Gregor VE, Liu Y, Anikin A et al. Tricyclic compound derivatives useful in the treatment of neoplastic diseases, inflammatory disorders and immunomodulatory disorders. CHEMBRIDGE RESEARCH LABORATORIES INC.: WO 2008021369 A2 (2008).
  • Kawahara ET, Miyake T, Roesel J. Preparation of pyrimidine compounds as FAK and/or ALK inhibitors. NOVARTIS A.-G. Switzerland; NOVARTIS PHARMA GMBH: WO 2006021457 A2 (2006).
  • Ahmed G, Bohnstedt A, Breslin HJ et al. Fused bicyclic derivatives of 2,4-diaminopyrimidine as alk and c-Met inhibitors. CEPHALON INC. USA; PHARMACOPEIA DRUG DISCOVERY, INC.: WO 2008051547 A1 (2008).
  • Gregor VE, Liu Y, Anikin A et al. Tricyclic compound derivatives useful in the treatment of neoplastic diseases, inflammatory disorders and immunomodulatory disorders. CHEMBRIDGE RESEARCH LABORATORIES INC. USA: US0171769 A1 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.