511
Views
30
CrossRef citations to date
0
Altmetric
Theme: General - Review

Metabolic profiling of biofluids: potential in lung cancer screening and diagnosis

, &
Pages 737-748 | Published online: 09 Jan 2014

References

  • Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46(4), 765–781 (2010).
  • Karim-Kos HE, De Vries E, Soerjomataram I, Lemmens V, Siesling S, Coebergh JWW. Recent trends of cancer in Europe: a combined approach of incidence, survival and mortality for 17 cancer sites since the 1990s. Eur. J. Cancer 44(10), 1345–1389 (2008).
  • Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J. Clin. 60(5), 277–300 (2010).
  • Pirozynski M. 100 years of lung cancer. Resp. Med. 100(12), 2073–2084 (2006).
  • Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo. Clin. Proc. 83(5), 584–594 (2008).
  • Rami-Porta R, Crowley JJ, Goldstraw P. The revised TNM staging system for lung cancer. Ann. Thorac. Cardiovasc. Surg. 15(1), 4–9 (2009).
  • Team NLSTR. The National Lung Screening Trial: overview and study design. Radiology 258(1), 243–253 (2011).
  • Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011).
  • Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL, Massion PP. The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev. Res. 5(8), 992–1006 (2012).
  • Ocak S, Sos ML, Thomas RK, Massion PP. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications. Eur. Resp. J. 34(2), 489–506 (2009).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11), 1181–1189 (1999).
  • Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48(1–2), 155–171 (2002).
  • Lenz EM, Wilson ID. Analytical strategies in metabonomics. J. Proteome Res. 6(2), 443–458 (2007).
  • Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem. Soc. Rev. 40, 387–426 (2011).
  • Eliasson M, Rännar S, Trygg J. From data processing to multivariate validation – essential steps in extracting interpretable information from metabolomics data. Curr. Pharm. Biotechnol. 12(7), 996–1004 (2011).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Davis VW, Bathe OF, Schiller DE, Slupsky CM, Sawyer MB. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J. Surg. Oncol. 103(5), 451–459 (2011).
  • Ng DJY, Pasikanti KK, Chan ECY. Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics 7(2), 155–178 (2011).
  • Moestue S, Sitter B, Bathen TF, Tessem MB, Gribbestad IS. HR MAS MR spectroscopy in metabolic characterization of cancer. Curr. Top. Med. Chem. 11(1), 2–26 (2011).
  • Duarte IF, Gil AM. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog. Nucl. Mag. Res. Sp. 62, 51–74 (2012).
  • Rocha CM, Barros AS, Gil AM et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J. Proteome Res. 9(1), 319–332 (2010).
  • Chen W, Zu Y, Huang Q et al. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Magn. Reson. Med. 66(6), 1531–1540 (2011).
  • Amann A, Corradi M, Mazzone P, Mutti A. Lung cancer biomarkers in exhaled breath. Exp. Rev. Mol. Diag. 11(2), 207–217 (2011).
  • Hakim M, Broza YY, Barash O et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112(11), 5949–5966 (2012).
  • Beckonert O, Keun HC, Ebbels TMD et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2(11), 2692–2703 (2007).
  • Tiziani S, Emwas A-H, Lodi A et al. Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal. Biochem. 377, 16–23 (2008).
  • Dunn WB, Broadhurst D, Begley P et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6(7), 1060–1083 (2011).
  • Wedge DC, Allwood JW, Dunn W et al. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal. Chem. 83(17), 6689–6697 (2011).
  • Lai H-S, Lee J-C, Lee P-H, Wang S-T, Chen W-J. Plasma free amino acid profile in cancer patients. Semin. Cancer Biol. 15(4), 267–276 (2005).
  • Okamoto N. Use of ‘AminoIndex technology’ for cancer screening. Ningen Dock 26, 911–922 (2012).
  • Maeda J, Higashiyama M, Imaizumi A et al. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer 10, 690 (2010).
  • Miyagi Y, Higashiyama M, Gochi A et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE 6(9), e24143 (2011).
  • Shingyoji M, Iizasa T, Higashiyama M et al. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer. BMC Cancer 13, 77 (2013).
  • Dong J, Cai XM, Zhao LL et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics 6(4), 478–488 (2010).
  • Guo YM, Wang XM, Qiu L et al. Probing gender-specific lipid metabolites and diagnostic biomarkers for lung cancer using Fourier transform ion cyclotron resonance mass spectrometry. Clin. Chim. Acta. 414, 135–141 (2012).
  • Hori S, Nishiumi S, Kobayashi K et al. A metabolomic approach to lung cancer. Lung Cancer 74(2), 284–292 (2011).
  • Cai X, Dong J, Zou L, Xue X, Zhang X, Liang X. Metabonomic study of lung cancer and the effects of radiotherapy on lung cancer patients: analysis of highly polar metabolites by ultraperformance HILIC coupled with Q-TOF MS. Chromatographia 74(5–6), 391–398 (2011).
  • Lokhov PG, Kharybin ON, Archakov AI. Diagnosis of lung cancer based on direct-infusion electrospray mass spectrometry of blood plasma metabolites. Int. J. Mass Spectrom. 309, 200–205 (2012).
  • Lokhov PG, Trifonova OP, Maslov DL, Archakov AI. Blood plasma metabolites and the risk of developing lung cancer in Russia. Eur. J. Cancer Prev. 22(4), 335–341 (2013).
  • Vaughan AA, Dunn WB, Allwood JW et al. Liquid chromatography–mass spectrometry calibration transfer and metabolomics data fusion. Anal. Chem. 84, 9848–9857 (2012).
  • Jordan KW, Adkins CB, Su L et al. Comparison of squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue–serum pairs. Lung Cancer 68(1), 44–50 (2010).
  • Rocha CM, Carrola J, Barros AS et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J. Proteome Res. 10(9), 4314–4324 (2011).
  • Bullinger D, Fux R, Nicholson G et al. Identification of urinary modified nucleosides and ribosylated metabolites in humans via combined ESI-FTICR MS and ESI-IT MS analysis. J. Am. Soc. Mass Spectrom. 19(10), 1500–1513 (2008).
  • An ZL, Chen YH, Zhang RP et al. Integrated ionization approach for RRLC-MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J. Proteome Res. 9(8), 4071–4081 (2010).
  • Yang Q, Shi X, Wang Y et al. Urinary metabonomic study of lung cancer by a fully automatic hyphenated hydrophilic interaction/RPLC-MS system. J. Sep. Sci. 33(10), 1495–1503 (2010).
  • Carrola J, Rocha CM, Barros AS et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 10(1), 221–230 (2011).
  • Eisner R, Stretch C, Eastman T et al. Learning to predict cancer-associated skeletal muscle wasting from 1H NMR profiles of urinary metabolites. Metabolomics 7(1), 25–34 (2011).
  • Zhou X-M, He C-C, Liu Y-M et al. Metabonomic classification and detection of small molecule biomarkers of malignant pleural effusions. Anal. Bioanal. Chem. 404(10), 3123–3133 (2012).
  • Ciebiada M, Gorski P, Antczak A. Eicosanoids in exhaled breath condensate and bronchoalveolar lavage fluid of patients with primary lung cancer. Dis. Markers 32(5), 329–335 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.