168
Views
13
CrossRef citations to date
0
Altmetric
Theme: Infectious Diseases - Review

Recent progress in prostate-specific antigen and HIV proteases detection

, , , &
Pages 707-718 | Published online: 09 Jan 2014

References

  • Neurath H, Walsh KA. Role of proteolytic enzymes in biological regulation (a review). Proc. Natl. Acad. Sci. USA 73(11), 3825–3832 (1976).
  • Rawlings ND, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40(D1), D343–D350 (2012).
  • Mittl PRE, Grutter MG. Opportunities for structure-based design of protease-directed drugs. Curr. Opin. Struct. Biol. 16(6), 769–775 (2006).
  • Woodward JKL, Holen I, Coleman RE, Buttle DJ. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone 41(6), 912–927 (2007).
  • Herszenyi L, Farinati F, Plebani M et al. [The role of cathepsins and the plasminogen activator/inhibitor system in colorectal cancer]. Orv. Hetil. 140(33), 1833–1836 (1999).
  • Suaifan GARY, Esseghaier C, Ng A, Zourob M. Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based. Analyst 138(13), 3735–9 (2013)
  • Nakajima H, Okuma Y, Morioka K et al. An integrated enzyme-linked immunosorbent assay system with an organic light-emitting diode and a charge-coupled device for fluorescence detection. J. Sep. Sci. 34(20), 2906–2912 (2011).
  • Bi S, Zhou H, Zhang S. Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens. Bioelectron. 24(10), 2961–2966 (2009).
  • Chikae M, Idegami K, Nagatani N, Tamiya E, Takamura Y. Highly sensitive method for electrochemical detection of silver nanoparticle labels in metalloimmunoassay with preoxidation/reduction signal enhancement. Electrochemistry 78(9), 748–753 (2010).
  • Baeyens WRG, Schulman SG, Calokerinos AC et al. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays. J. Pharmaceut. Biomed. 17(6–7), 941–953 (1998).
  • Jain A, Verma RK, Tiwari V, Goel MM. Development of a new antigen detection dot-ELISA for diagnosis of tubercular lymphadenitis in fine needle aspirates. J. Microbiol. Meth. 53(1), 107–112 (2003).
  • Hildebrandt N, Charbonniere LJ, Ziessel RF, Loehmannsroeben H-G. Quantum dots as resonance energy transfer acceptors for monitoring biological interactions - art. no. 61910W. In: P. Soc. Photo-Opt Ins. Grzymala R, Haeberle O ( Eds). W1910–W1910 (2006).
  • Qi XH, Mi JQ, Zhang XX, Chang WB. Electrochemical studies on the interaction of morphine and its analogs with its antibody. Electrochem. Commun. 7(2), 227–232 (2005).
  • Esseghaier C, Ng A, Zourob M. A novel and rapid assay for HIV-1 protease detection using magnetic bead mediation. Biosens. Bioelectron. 41(0), 335–341 (2013).
  • Kim M, Park K, Jeong EJ, Shin YB, Chung BH. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein. Anal. Biochem. 351(2), 298–304 (2006).
  • Hou YX, Helali S, Zhang AD et al. Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 21(7), 1393–1402 (2006).
  • Mahmoud KA, Luong JHT. A sensitive electrochemical assay for early detection of hiv-1 protease using ferrocene-peptide conjugate/au nanoparticle/single walled carbon nanotube modified electrode. Anal. Lett. 43(10–11), 1680–1687 (2010).
  • Dultsev FN, Kolosovsky EA. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band. Anal. Chim. Acta. 687(1), 75–81 (2011).
  • Xia Z, Xing Y, So MK et al. Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation. Anal. Chem. 80(22), 8649–8655 (2008).
  • Yeh CH, Chang YH, Lin HP, Chang TC, Lin YC. A newly developed optical biochip for bacteria detection based on DNA hybridization. Sensor. Actuat. B-Chem. 161(1), 1168–1175 (2012).
  • Braun K, Ulmert D, Lilja H. Molecular forms of prostate specific antigen (PSA) in serum: clinical andanalytical implications. Tumour Markers 14–16 (2011).
  • Stangelberger A, Margreiter M, Seitz C, Djavan B. Prostate cancer screening markers. JMHG 4(3), 233–244 (2007).
  • Stamey TA, Yang N, Hay AR, Mcneal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl J. Med. 317(15), 909–916 (1987).
  • Zhu L, Koistinen H, Landegren U, Stenman U-H. Proximity ligation measurement of the complex between prostate specific antigen and alpha1-protease inhibitor. Clin. Chem. 55(9), 1665–1671 (2009).
  • Wians FH, Cheli CD, Balko JA, Bruzek DJ, Chan DW, Sokoll LJ. Evaluation of the clinical performance of equimolar- and skewed-response total prostate-specific antigen assays versus complexed and free PSA assays and their ratios in discriminating between benign prostatic hyperplasia and prostate cancer. Clin. Chim. Acta. 326(1–2), 81–95 (2002).
  • Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19(9), 856–860 (2001).
  • Labib M, Martic S, Shipman PO, Kraatz HB. Electrochemical analysis of HIV-1 reverse transcriptase serum level: Exploiting protein binding to a functionalized nanostructured surface. Talanta 85(1), 770–778 (2011).
  • Zheng L, Jia LY, Li B et al. A sandwich HIV p24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules 17(5), 5988–6000 (2012).
  • Patrick GL. Antiviral agent: structure and life cycle of HIV. In: 4th An introduction to medicinal chemistry. Oxford University Press, Oxford, New York, 483–484 (2005).
  • Kheiri F, Sabzi RE, Jannatdoust E, Shojaeefar E, Sedghi H. A novel amperometric immunosensor based on acetone-extracted propolis for the detection of the HIV-1 p24 antigen. Biosens. Bioelectron. 26(11), 4457–4463 (2011).
  • Rupert K, Rowland-Jones SL. Methods of detection of HIV-specific CTL and their role in protection against HIV infection. (1999).
  • Schumacher W, Frick E, Kauselmann M, et al. Fully automated quantification of human immunodeficiency virus (HIV) type 1 RNA in human plasma by the COBAS AmpliPrep/COBAS TaqMan system. J. Clin. Virol. 38(4), 304–312 (2007).
  • Liu J, Du B, Tang S, Devoe DL, Hewlett IK. Rapid and sensitive detection of capsid protein p24 of humanImmunodeficiency virus type 1 (HIV-1) using on-chip europium(iii) nanoparticle-based immunoassay. Presented at: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Seattle, Washington, USA, 2–6 October 2011 1197–1199 (2011).
  • Fiscus SA, Cheng B, Crowe SM et al. HIV-1 viral load assays for resource-limited settings. PLoS Med. 3(10), e417 (2006). Electronic
  • Gleaves CA, Welle J, Campbell M et al. Multicenter evaluation of the Bayer VERSANT (TM) HIV-1 RNA 3.0 assay: analytical and clinical performance. J. Clin. Virol. 25(2), 205–216 (2002).
  • Miedouge M, Greze M, Bailly A, Izopet J. Analytical sensitivity of four HIV combined antigen/antibody assays using the p24 WHO standard. J. Clin. Virol. 50(1), 57–60 (2011).
  • Wang SQ, Xu F, Demirci U. Advances in developing HIV-1 viral load assays for resource-limited settings. Biotechnol. Adv. 28(6), 770–781 (2010).
  • Labbett W, Garcia-Diaz A, Fox Z et al. Comparative evaluation of the exavir load version 3 reverse transcriptase assay for measurement of human immunodeficiency virus type 1 plasma load. J. Clin. Microbiol. 47(10), 3266–3270 (2009).
  • Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano. 2(5), 1051–1057 (2008).
  • Suaifan GARY, Ng A, Zourob M. Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based. Analyst 138(13), 3735–9 (2013)
  • Chen Z, Lei Y, Chen X, Wang Z, Liu J. An aptamer based resonance light scattering assay of prostate specific antigen. Biosens. Bioelectron. 36(1), 35–40 (2012).
  • Dey A, Kaushik A, Arya SK, Bhansali S. Mediator free highly sensitive polyaniline-gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection. J. Mat. Chem. 22(29), 14763–14772 (2012).
  • Yan M, Zang DJ, Ge SG, Ge L, Yu JH. A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens. Bioelectron. 38(1), 355–361 (2012).
  • Zhang T, He Y, Wei J, Que L. Nanostructured optical microchips for cancer biomarker detection. Biosens. Bioelectron. 38(1), 382–388 (2012).
  • Tian J, Huang J, Zhao Y, Zhao S. Electrochemical immunosensor for prostate-specific antigen using a glassy carbon electrode modified with a nanocomposite containing gold nanoparticles supported with starch-functionalized multi-walled carbon nanotubes. Microchim. Acta 178(1), 81–88 (2012).
  • Liu B, Lu L, Hua E, Jiang S, Xie G. Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim. Acta 178(1), 163–170 (2012).
  • Wu CC, Pan TM, Wu CS et al. Label-free detection of prostate specific antigen using a silicon nanobelt field-effect transistor. Int. J. Electrochem. Sci. 7(5), 4432–4442 (2012).
  • Mao K, Wu D, Li Y et al. Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal. Biochem. 422(1), 22–27 (2012).
  • Tian CY, Zhao WW, Wang J, Xu JJ, Chen HY. Amplified quenching of electrochemiluminescence from CdS sensitized TiO2 nanotubes by CdTe-carbon nanotube composite for detection of prostate protein antigen in serum. Analyst 137(13), 3070–3075 (2012).
  • Zhang M, Dai WJ, Yan M et al. Ultrasensitive electrochemiluminescence immunosensor using PtAg@carbon nanocrystals composites as labels and carbon nanotubes-chitosan/gold nanoparticles as enhancer. Analyst 137(9), 2112–2118 (2012).
  • Chuah K, Lai LMH, Goon IY et al. Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem. Commun (Camb). 48(29), 3503–3505 (2012).
  • Sokoll LJ, Chan DW, Klee GG et al. Multi-center analytical performance evaluation of the Access Hybritech® p2PSA immunoassay. Clin. Chim. Acta. 413(15–16), 1279–1283 (2012).
  • Chikkaveeraiah BV, Mani V, Patel V, Gutkind JS, Rusling JF. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum. Biosens. Bioelectron. 26(11), 4477–4483 (2011).
  • Yang J, Bi CF, Fan YH, Zhang X. Investigation of 3,3′-diaminobenzidine-H(2)O(2)-horseradish peroxidase voltammetric enzyme-linked immunoassay system used for the detection of prostate specific antigen. Asian J. Chem. 23(12), 5373–5376 (2011).
  • Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal. Chem. 83(17), 6698–6703 (2011).
  • Yang MH, Javadi A, Gong SQ. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sens. Actuat. B-Chem. 155(1), 357–360 (2011).
  • Lee J, Jung J, Park S, Chen J, Choi J, Hyun J. Microarray of stimuli-responsive microbeads for duplexed immunoassay. BioChip J. 5(2), 158–164 (2011).
  • Xu SJ, Liu Y, Wang TH, Li JH. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem. 83(10), 3817–3823 (2011).
  • Li T, Yang MH, Li H. Label-free electrochemical detection of cancer marker based on graphene-cobalt hexacyanoferrate nanocomposite. J. Electroanal. Chem. 655(1), 50–55 (2011).
  • Li H, Wei Q, He J et al. Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles. Biosens. Bioelectron. 26(8), 3590–3595 (2011).
  • Wei Q, Zhao Y, Xu C et al. Nanoporous gold film based immunosensor for label-free detection of cancer biomarker. Biosens. Bioelectron. 26(8), 3714–3718 (2011).
  • Okada H, Hosokawa K, Maeda M. Power-free microchip immunoassay of PSA in human serum for point-of-care testing. Anal. Sci. 27(3), 237–241 (2011).
  • Triroj N, Jaroenapibal P, Shi H, Yeh JI, Beresford R. Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosens. Bioelectron. 26(6), 2927–2933 (2011).
  • Li H, Wei Q, Wang G et al. Sensitive electrochemical immunosensor for cancer biomarker with signal enhancement based on nitrodopamine-functionalized iron oxide nanoparticles. Biosens. Bioelectron. 26(6), 3044–3049 (2011).
  • Zhao N, He Y, Mao X et al. Electrochemical assay of active prostate-specific antigen (PSA) using ferrocene-functionalized peptide probes. Electrochem. Commun. 12(3), 471–474 (2010).
  • Kim DJ, Lee NE, Park JS et al. Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. Biosens. Bioelectron. 25(11), 2477–2482 (2010).
  • Thaxton CS, Elghanian R, Thomas AD et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc. Natl Acad. Sci. USA 106(44), 18437–18442 (2009).
  • Huang Y, Wang T-H, Jiang J-H, Shen G-L, Yu R-Q. Prostate specific antigen detection using microgapped electrode array immunosensor with enzymatic silver deposition. Clin. Chem. 55(5), 964–971 (2009).
  • Panini NV, Messina GA, Salinas E, Fernández H, Raba J. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens. Bioelectron. 23(7), 1145–1151 (2008).
  • Lin YY, Wang J, Liu G, Wu H, Wai CM, Lin Y. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen. Biosens. Bioelectron. 23(11), 1659–1665 (2008).
  • Choi JW, Oh BK, Jang YH, Kang DY. Ultrasensitive immunoassay for prostate specific antigen using scanning tunneling microscopy-based electrical detection. Appl. Phys. Lett. 93(3) (2008).
  • Zheng Y, Chen H, Liu X-P et al. An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome. Talanta 77(2), 809–814 (2008).
  • Shulga OV, Zhou D, Demchenko AV, Stine KJ. Detection of free prostate specific antigen (fPSA) on a nanoporous gold platform. Analyst 133(3), 319–322 (2008).
  • Okuno J, Maehashi K, Kerman K et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens. Bioelectron. 22(9–10), 2377–2381 (2007).
  • Taylor JA, Koff SG, Dauser DA, Mcleod DG. The relationship of ultrasensitive measurements of prostate-specific antigen levels to prostate cancer recurrence after radical prostatectomy. BJU Int. 98(3), 540–543 (2006).
  • Wu P, Zhu L, Stenman UH, Leinonen J. Immunopeptidometric assay for enzymatically active prostate-specific antigen. Clin. Chem. 50(1), 125–129 (2004).
  • Acevedo B, Perera Y, Ruiz M et al. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clin. Chim. Acta. 317(1–2), 55–63 (2002).
  • Niemela P, Lovgren J, Karp M, Lilja H, Pettersson K. Sensitive and specific enzymatic assay for the determination of precursor forms of prostate-specific antigen after an activation step. Clin. Chem. 48(8), 1257–1264 (2002).
  • Sarkar P, Pal PS, Ghosh D, Setford SJ, Tothill IE. Amperometric biosensors for detection of the prostate cancer marker (PSA). Int. J. Pharm. 238(1–2), 1–9 (2002).
  • Seto Y, Iba T, Abe K. Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferase. Luminescence 16(4), 285–290 (2001).
  • Soukka T, Paukkunen J, Harma H, Lonnberg S, Lindroos H, Lovgren T. Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clin. Chem. 47(7), 1269–1278 (2001).
  • Eriksson S, Vehniainen M, Jansen T et al. Dual-label time-resolved immunofluorometric assay of free and total prostate-specific antigen based on recombinant Fab fragments. Clin. Chem. 46(5), 658–666 (2000).
  • He JK, Evers DL, O'leary TJ, Mason JT. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system. J. Nanobiotechnol. 10(1), 26 (2012).
  • Lu CH, Zhang Y, Tang SF et al. Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron. 31(1), 439–444 (2012).
  • Dong HH, Liu JL, Zhu H et al. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen. Virol. J. 9, 180 (2012).
  • Labib M, Shipman PO, Martic S, Kraatz H-B. Towards an early diagnosis of HIV infection: an electrochemical approach for detection of HIV-1 reverse transcriptase enzyme. Analyst 136(4), 708–715 (2011).
  • Wang RB, Xue CH, Gao M, Qi HL, Zhang CX. Ultratrace voltammetric method for the detection of DNA sequence related to human immunodeficiency virus type 1. Microchim. Acta 172(3–4), 291–297 (2011).
  • Tang S, Hewlett I. Nanoparticle-based immunoassays for sensitive and early detection of HIV-1 capsid (p24) antigen. J. Infect. Dis. 201( Suppl. 1), S59–S64 (2010).
  • Gan N, Luo NX, Li TH, Zheng L, Ni MJ. A non-enzyme amperometric immunosensor for rapid determination of human immunodeficiency virus p24 based on magnetism controlled carbon nanotubes modified printed electrode. Chin. J. Anal. Chem. 38(11), 1556–1562 (2010).
  • Workman S, Wells SK, Pau CP et al. Rapid detection of HIV-1 p24 antigen using magnetic immuno-chromatography (MICT). J. Virol. Methods 160(1–2), 14–21 (2009).
  • Alphonse Tshishi T, Ditu SM, Kabwe BM, Kiampa Philomène M, Bamoleke Anaclet S. A sensitive radioimmunoassay of human immunodeficiency virus type-1 p24 antigen in serum. Immuno-analyse & Biologie Spécialisée 22(3), 190–193 (2007).
  • Li CC, Seidel KD, Coombs RW, Frenkel LM. Detection and quantification of human immunodeficiency virus type 1 p24 antigen in dried whole blood and plasma on filter paper stored under various conditions. J. Clin. Microbiol. 43(8), 3901–3905 (2005).
  • Grant SA, Xu JT. Investigation of an optical dual receptor method to detect HIV. IEEE Sens. J. 2(5), 409–415 (2002).
  • Zhao X, Chen X, Zhang Y et al. Development and evaluation of reverse-transcription loop-mediated isothermal amplification for rapid detection of human immunodeficiency virus type 1. Indian J. Med. Microbi. 30(4), 391–396 (2012).
  • Hsia CC, Chlzhikov VE, Yang AX et al. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples. Biochem. Bioph. Res. Co. 356(4), 1017–1023 (2007).
  • Mccormick MK, Dockter J, Linnen JM et al. Evaluation of a new molecular assay for detection of human immunodeficiency virus type 1 RNA, hepatitis C virus RNA, and hepatitis B virus DNA. J. Clin. Virol. 36(3), 166–176 (2006).
  • Rouet F, Ekouevi DK, Chaix ML et al. Transfer and evaluation of an automated, low-cost real-time reverse transcription-PCR test for diagnosis and monitoring of human immunodeficiency virus type 1 infection in a west African resource-limited setting. J. Clin. Microbiol. 43(6), 2709–2717 (2005).
  • Rouet F, Montcho C, Rouzioux C et al. Early diagnosis of paediatric HIV-1 infection among African breast-fed children using a quantitative plasma HIV RNA assay. Aids 15(14), 1849–1856 (2001).
  • Armas Cayarga A, Hernández YP, González González YJ et al. Generation of HIV-1 and internal control transcripts as standards for an in-house quantitative competitive RT-PCR assay to determine HIV-1 viral load. Biotechnol. Res. Int. 2011, 964831 (2011).
  • Drosten C, Panning M, Drexler JF et al. Ultrasensitive monitoring of HIV-1 viral load by a low-cost real-time reverse transcription-PCR assay with internal control for the 5′ long terminal repeat domain. Clin. Chem. 52(7), 1258–1266 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.