934
Views
84
CrossRef citations to date
0
Altmetric
Theme: Biomarker Diagnostics - Reviews

Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients

, &
Pages 827-844 | Published online: 09 Jan 2014

References

  • Hoshimoto S, Faries MB, Morton DL et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann. Surg. 255(2), 357–362 (2011).
  • Hoshimoto S, Shingai T, Morton DL et al. Association between circulating tumor cells and prognosis in patients with stage III melanoma with sentinel lymph node metastasis in a phase III international multicenter trial. J. Clin. Oncol. 30(31), 3819–3826 (2012).
  • Koyanagi K, O'Day SJ, Boasberg P et al. Serialn monitoring of circulating tumor cells predicts outcome of induction biochemotherapy plus maintenance biotherapy for metastatic melanoma. Clin. Cancer Res. 16(8), 2402–2408 (2010).
  • Koyanagi K, Bilchik AJ, Saha S et al. Prognostic relevance of occult nodal micrometastases and circulating tumor cells in colorectal cancer in a prospective multicenter trial. Clin. Cancer Res. 14(22), 7391–7396 (2008).
  • Alix-Panabieres C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu. Rev Med. 63, 199–215 (2012).
  • Schwarzenbach H, Hoon DSB, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11(6), 426–437 (2011).
  • Dawson SJ, Tsui DW, Murtaza M et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368(13), 1199–1209 (2013).
  • Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer-a survey. Biochem. Biophys. Acta 1775(1), 181–232 (2007).
  • Stroun M, Maurice P, Vasioukhin V et al. The origin and mechanism of circulating DNA. Ann. NY Acad. Sci. 906, 161–168 (2000).
  • Gahan PB, Swaminathan R. Circulating nucleic acids in plasma and serum. Recent developments. Ann. NY Acad. Sci. 1137, 1–6 (2008).
  • Silva MA, Hegab B, Hyde C et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 57(11), 1592–1596 (2008).
  • Kauhanen SP, Komar G, Seppanen MP et al. A prospective diagnostic accuracy study of 18F-fluorodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann. Surg. 250(6), 957–963 (2009).
  • Casali M, Froio A, Carbonelli C, Versari A. PET/CT imaging in oncology: exceptions that prove the rule. Case Rep. Oncol. Med. 2013, 865032 (2013).
  • Chiu RWK, Lo YMD. Noninvasive prenatal diagnosis empowered by high-throughput sequencing. Prenat. Diagn. 32(4), 401–406 (2012).
  • Lo YMD, Chiu RWK. Genomic Analysis of Fetal Nucleic Acids in Maternal Blood. Annu. Rev. Genomics Hum. Genet. 13(1), 285–306 (2012).
  • Litton C, Stone J, Eddleman K, Lee MJ. Noninvasive prenatal diagnosis: past, present, and future. Mt. Sinai J. Med. 76(6), 521–528 (2009).
  • Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger. Cell Biochem. Funct. 28(7), 529–538 (2010).
  • Pisetsky DS, Fairhurst AM. The origin of extracellular DNA during the clearance of dead and dying cells. Autoimmunity 40(4), 281–284 (2007).
  • Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).
  • Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 10(1), 108–116 (2003).
  • Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 12(6), 385–392 (2011).
  • Roninson IB, Broude EV, Chang B-D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Updat. 4(5), 303–313 (2001).
  • Delgado PO, Alves BC, Gehrke Fde S et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol. 34(2), 983–986 (2013).
  • Wang BG, Huang HY, Chen YC et al. Increased plasma DNA integrity in cancer patients. Cancer Res. 63(14), 3966–3968 (2003).
  • Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 35(9), 2375–2382 (1975).
  • Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin. Chim. Acta 313(1–2), 139–142 (2001).
  • Rogers JC, Boldt D, Kornfeld S, Skinner A, Valeri CR. Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc. Natl Acad. Sci. USA 69(7), 1685–1689 (1972).
  • Rogers JC. Identification of an intracellular precursor to DNA excreted by human lymphocytes. Proc. Natl Acad. Sci. USA 73(9), 3211–3215 (1976).
  • Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37(3), 646–650 (1977).
  • Shapiro B, Chakrabarty M, Cohn EM, Leon SA. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 51(11), 2116–2120 (1983).
  • Stroun M, Anker P, Lyautey J, Lederrey C, Maurice PA. Isolation and characterization of DNA from the plasma of cancer patients. Eur. J. Cancer Clin. Oncol. 23(6), 707–712 (1987).
  • Sozzi G, Conte D, Mariani L et al. Analysis of circulating tumor DNA in plasma at diagnosis and during follow-up of lung cancer patients. Cancer Res. 61(12), 4675–4678 (2001).
  • Catarino R, Ferreira MM, Rodrigues H et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 27(8), 415–421 (2008).
  • Hashad D, Sorour A, Ghazal A, Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. J. Clin. Lab Anal. 26(6), 467–472 (2012).
  • Tuaeva NO, Abramova ZI, Sofronov VV. The origin of elevated levels of circulating DNA in blood plasma of premature neonates. Ann. NY Acad. Sci. 1137(1), 27–30 (2008).
  • Bjorkman L, Reich CF, Pisetsky DS. The use of fluorometric assays to assess the immune response to DNA in murine systemic lupus erythematosus. Scand. J. Immunol. 57(6), 525–533 (2003).
  • Gormally E, Hainaut P, Caboux E et al. Amount of DNA in plasma and cancer risk: A prospective study. Int. J. Cancer. 111(5), 746–749 (2004).
  • Jen JIN, Wu LI, Sidransky D. An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Ann. NY Acad Sci. 906(1), 8–12 (2000).
  • Umetani N, Hiramatsu S, Hoon DS. Higher amount of free circulating DNA in serum than in plasma is not mainly caused by contaminated extraneous DNA during separation. Ann. NY Acad Sci. 1075, 299–307 (2006).
  • Jylhävä J, Jylhä M, Lehtimäki T, Hervonen A, Hurme M. Circulating cell-free DNA is associated with mortality and inflammatory markers in nonagenarians: The Vitality 90+ Study. Exp. Gerontol. 47(5), 372–378 (2012).
  • Poon LC, Musci T, Song K, Syngelaki A, Nicolaides KH. Maternal plasma cell-free fetal and maternal DNA at 11–13 weeks gestation: relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn. Ther. 33(4),215–223 (2013).
  • Zeybek YG, Gunel T, Benian A, Aydinli K, Kaleli S. Clinical evaluations of cell-free fetal dna quantities in pre-eclamptic pregnancies. J. Obstet. Gynaecol. Res. 39(3), 632–640 (2013).
  • Macher H, Egea-Guerrero JJ, Revuelto-Rey J et al. Role of early cell-free DNA levels decrease as a predictive marker of fatal outcome after severe traumatic brain injury. Clin. Chim. Acta 414, 12–17 (2012).
  • Jing RR, Wang HM, Cui M et al. A sensitive method to quantify human cell-free circulating DNA in blood: Relevance to myocardial infarction screening. Clin. Biochem. 44(13), 1074–1079 (2011).
  • Fatouros IG, Jamurtas AZ, Nikolaidis MG et al. Time of sampling is crucial for measurement of cell-free plasma DNA following acute aseptic inflammation induced by exercise. Clin. Biochem. 43(16–17), 1368–1370 (2010).
  • Jylhävä J, Kotipelto T, Raitala A et al. Aging is associated with quantitative and qualitative changes in circulating cell-free DNA: the Vitality 90+ study. Mech Ageing Dev. 132(1–2), 20–26 (2011).
  • Jylhava J, Lyytikainen LP, Kahonen M et al. A genome–wide association study identifies UGT1A1 as a regulator of serum cell-free DNA in young adults: The Cardiovascular Risk in Young Finns Study. PLoS ONE 7(4), e35426 (2012).
  • Dong J, Phelps RG, Qiao R et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 63(14), 3883–3885 (2003).
  • Andreyev HJN, Norman AR, Cunningham D et al. Kirsten ras mutations in patients with colorectal cancer: the “RASCAL II” study. Br. J. Cancer 85(5), 692–696 (2001).
  • De Roock W, Jonker DJ, Di Nicolantonio F et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy- refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16), 1812–1820 (2010).
  • Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61(4), 1659–1665 (2001).
  • Umetani N, Kim J, Hiramatsu S et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin. Chem. 52(6), 1062–1069 (2006).
  • Sunami E, Vu AT, Nguyen SL, Giuliano AE, Hoon DSB. Quantification of line1 in circulating DNA as a molecular biomarker of breast cancer. Ann. NY Acad. Sci. 1137(1), 171–174 (2008).
  • Umetani N, Giuliano AE, Hiramatsu SH et al. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J. Clin. Oncol. 24(26), 4270–4276 (2006).
  • Chan KC, Leung SF, Yeung SW, Chan AT, Lo YM. Persistent aberrations in circulating DNA integrity after radiotherapy are associated with poor prognosis in nasopharyngeal carcinoma patients. Clin. Cancer. Res. 14(13), 4141–4145 (2008).
  • Agostini M, Pucciarelli S, Enzo MV et al. Circulating cell-free DNA: a promising marker of pathologic tumor response in rectal cancer patients receiving preoperative chemoradiotherapy. Ann. Surg. Oncol. 18(9), 2461–2468 (2011).
  • Tomita H, Ichikawa D, Ikoma D et al. Quantification of circulating plasma DNA fragments as tumor markers in patients with esophageal cancer. Anticancer Res. 27(4C), 2737–2741 (2007).
  • Jiang WW, Zahurak M, Goldenberg D et al. Increased plasma DNA integrity index in head and neck cancer patients. Int. J. Cancer 119(11), 2673–2676 (2006).
  • Gang F, Guorong L, An Z et al. Prediction of clear cell renal cell carcinoma by integrity of cell-free DNA in serum. Urology 75(2), 262–265 (2010).
  • Chan KC, Lai PB, Mok TS et al. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin. Chem. 54(9), 1528–1536 (2008).
  • Pinzani P, Salvianti F, Zaccara S et al. Circulating cell-free DNA in plasma of melanoma patients: qualitative and quantitative considerations. Clin. Chim. Acta 412(23–24), 2141–2145 (2011).
  • Hanley R, Rieger-Christ KM, Canes D et al. DNA integrity assay: a plasma-based screening tool for the detection of prostate cancer. Clin. Cancer Res. 12(15), 4569–4574 (2006).
  • Ellinger J, Bastian PJ, Ellinger N et al. Apoptotic DNA fragments in serum of patients with muscle invasive bladder cancer: a prognostic entity. Cancer Lett. 264(2), 274–280 (2008).
  • Ellinger J, Bastian PJ, Haan KI et al. Noncancerous PTGS2 DNA fragments of apoptotic origin in sera of prostate cancer patients qualify as diagnostic and prognostic indicators. Int. J. Cancer. 122(1), 138–143 (2008).
  • Ellinger J, Wittkamp V, Albers P et al. Cell-free circulating DNA: diagnostic value in patients with testicular germ cell cancer. J. Urol. 181(1), 363–371 (2009).
  • Sorenson GD, Pribish DM, Valone FH et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomarkers Prev. 3(1), 67–71 (1994).
  • Vasioukhin V, Anker P, Maurice P et al. Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 86(4), 774–779 (1994).
  • Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366(10), 883–892 (2012).
  • Wu X, Northcott PA, Dubuc A et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482(7386), 529–533 (2012).
  • Campbell PJ, Yachida S, Mudie LJ et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319), 1109–1113 (2010).
  • Navin N, Krasnitz A, Rodgers L et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20(1), 68–80 (2010).
  • Navin N, Kendall J, Troge J et al. Tumour evolution inferred by single-cell sequencing. Nature 472(7341), 90–94 (2011).
  • Su KY, Chen HY, Li KC et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol. 30(4), 433–440 (2012).
  • Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer. 108(3), 479–485 (2013).
  • Chan KC, Jiang P, Zheng YW et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59(1), 211–224 (2013).
  • Murtaza M, Dawson SJ, Tsui DW et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497(7447), 108–112 (2013).
  • Fan HC, Gu W, Wang J et al. Non-invasive prenatal measurement of the fetal genome. Nature 487(7407), 320–324 (2012).
  • Kitzman JO, Snyder MW, Ventura M et al. Noninvasive whole–genome sequencing of a human fetus. Sci. Transl. Med. 4(137), 137ra176 (2012).
  • Leary RJ, Sausen M, Kinde I et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4(162), 162ra154 (2012).
  • Fehm T, Becker S, Duerr-Stoerzer S et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res. 9(5), R74 (2007).
  • Ignatiadis M, Sotiriou C, Pantel K et al. HER2-Positive DTCs/CTCs in Breast Cancer. In: Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer. Springer, Berlin, Heidelberg, DE (2012).
  • Nawroz H, Koch W, Anker P, Stroun M, Sidransky D. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat. Med. 2(9), 1035–1037 (1996).
  • Schulte-Hermann R, Bursch W, Grasl-Kraupp B, Török L, Ellinger A, Müllauer L. Role of active cell death (apoptosis) in multi-stage carcinogenesis. Toxicol Lett. 82–83, 143–148 (1995).
  • Fujiwara Y, Chi DD, Wang H et al. Plasma DNA microsatellites as tumor-specific markers and indicators of tumor progression in melanoma patients. Cancer Res. 59(7), 1567–1571 (1999).
  • Taback B, Giuliano AE, Hansen NM, Hoon DS. Microsatellite alterations detected in the serum of early stage breast cancer patients. Ann. NY Acad. Sci. 945, 22–30 (2001).
  • Taback B, Fujiwara Y, Wang HJ et al. Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res. 61(15), 5723–5726 (2001).
  • Taback B, O'Day SJ, Boasberg PD et al. Circulating DNA microsatellites: molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J. Natl Cancer Inst. 96(2), 152–156 (2004).
  • Taback B, Saha S, Hoon DS. Comparative analysis of mesenteric and peripheral blood circulating tumor DNA in colorectal cancer patients. Ann. NY Acad. Sci. 1075, 197–203 (2006).
  • Nakamura T, Sunami E, Nguyen T, Hoon DS. Analysis of loss of heterozygosity in circulating DNA. Methods Mol. Biol. 520, 221–229 (2009).
  • Schwarzenbach H, Eichelser C, Kropidlowski J et al. Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clin. Cancer Res. 18(20), 5719–5730 (2012).
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell 128(4), 683–692 (2007).
  • Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet. 13(10), 679–692 (2012).
  • Esteller M, Sanchez-Cespedes M, Rosell R et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 59(1), 67–70 (1999).
  • Silva JM, Dominguez G, Villanueva MJ et al. Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Br. J. Cancer 80(8), 1262–1264 (1999).
  • Wong IHN, Dennis Lo YM, Zhang J et al. Detection of aberrant p16 Methylation in the plasma and serum of liver cancer patients. Cancer Res. 59(1), 71–73 (1999).
  • Kawakami K, Brabender J, Lord RV et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J. Natl Cancer Inst. 92(22), 1805–1811 (2000).
  • Lecomte T, Berger A, Zinzindohoué F et al. Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int. J. Cancer. 100(5), 542–548 (2002).
  • Li L, Choi JY, Lee KM et al. DNA methylation in peripheral blood: a potential biomarker for cancer molecular epidemiology. J. Epidemiol. 22(5), 384–394 (2012).
  • Kristensen LS, Hansen LL. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin. Chem. 55(8), 1471–1483 (2009).
  • Irizarry RA, Ladd-Acosta C, Wen B et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41(2), 178–186 (2009).
  • Marzese DM, Scolyer RA, Huynh JL et al. Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D Cluster associated with prognosis. Hum. Mol. Genet. doi:10.1093/hmg/ddt420 (2013) ( Epub ahead of print).
  • Hansen KD, Timp W, Bravo HC et al. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet. 43(8), 768–775 (2011).
  • Hoshimoto S, Kuo CT, Chong KK et al. AIM1 and LINE-1 epigenetic aberrations in tumor and serum relate to melanoma progression and disease outcome. J. Invest. Dermatol. 132(6), 1689–1697 (2012).
  • van Hoesel AQ, van de Velde CJ, Kuppen PJ et al. Hypomethylation of LINE-1 in primary tumor has poor prognosis in young breast cancer patients: a retrospective cohort study. Breast Cancer Res. Treat. 134(3), 1103–1114 (2012).
  • Sunami E, de Maat M, Vu A, Turner RR, Hoon DS. LINE-1 hypomethylation during primary colon cancer progression. PLoS ONE 6(4), e18884 (2011).
  • van Hoesel AQ, van de Velde CJ, Kuppen PJ et al. Primary tumor classification according to methylation pattern is prognostic in patients with early stage ER-negative breast cancer. Breast Cancer Res. Treat. 131(3), 859–869 (2011).
  • de Maat MF, Narita N, Benard A et al. Development of sporadic microsatellite instability in colorectal tumors involves hypermethylation at methylated-in-tumor loci in adenoma. Am. J. Pathol. 177(5), 2347–2356 (2010).
  • Zhai R, Zhao Y, Su L et al. Genome-wide DNA methylation profiling of cell-free serum DNA in esophageal adenocarcinoma and Barrett esophagus. Neoplasia 14(1), 29–33 (2012).
  • Mori T, O'Day SJ, Umetani N et al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy. J. Clin. Oncol. 23(36), 9351–9358 (2005).
  • Sunami E, Shinozaki M, Higano CS et al. Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin. Chem. 55(3), 559–567 (2009).
  • Salvianti F, Pinzani P, Verderio P et al. Multiparametric analysis of cell-free DNA in melanoma patients. PLoS ONE 7(11), e49843 (2012).
  • Asaga S, Kuo C, Nguyen T et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin. Chem. 57(1), 84–91 (2011).
  • Roth C, Pantel K, Muller V et al. Apoptosis-related deregulation of proteolytic activities and high serum levels of circulating nucleosomes and DNA in blood correlate with breast cancer progression. BMC Cancer. 11, 4 (2011).
  • Gong B, Xue J, Yu J et al. Cell-free DNA in blood is a potential diagnostic biomarker of breast cancer. Oncol. Lett. 3(4), 897–900 (2012).
  • Perkins G, Yap TA, Pope L et al. Multi-purpose utility of circulating plasma DNA testing in patients with advanced cancers. PLoS ONE 7(11), e47020 (2012).
  • Divella R, Tommasi S, Lacalamita R et al. Circulating hTERT DNA in early breast cancer. Anticancer Res. 29(7), 2845–2849 (2009).
  • Shi W, Lv C, Qi J et al. Prognostic value of free DNA quantification in serum and cerebrospinal fluid in glioma patients. J. Mol. Neurosci. 46(3), 470–475 (2012).
  • Schwarzenbach H, Stoehlmacher J, Pantel K, Goekkurt E. Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann. NY Acad. Sci. 1137, 190–196 (2008).
  • Danese E, Montagnana M, Minicozzi AM et al. Real-time polymerase chain reaction quantification of free DNA in serum of patients with polyps and colorectal cancers. Clin. Chem. Lab. Med. 48(11), 1665–1668 (2010).
  • Park KU, Lee HE, Park do J et al. MYC quantitation in cell-free plasma DNA by real-time PCR for gastric cancer diagnosis. Clin. Chem. Lab Med. 47(5), 530–536 (2009).
  • Tomochika S, Iizuka N, Watanabe Y et al. Increased serum cell-free DNA levels in relation to inflammation are predictive of distant metastasis of esophageal squamous cell carcinoma. Exp. Ther. Med. 1(1), 89–92 (2010).
  • Park JL, Kim HJ, Choi BY et al. Quantitative analysis of cell-free DNA in the plasma of gastric cancer patients. Oncol. Lett. 3(4), 921–926 (2012).
  • Chen H, Sun LY, Zheng HQ, Zhang QF, Jin XM. Total serum DNA and DNA integrity: diagnostic value in patients with hepatitis B virus-related hepatocellular carcinoma. Pathology 44(4), 318–324 (2012).
  • Zachariah RR, Schmid S, Buerki N et al. Levels of circulating cell-free nuclear and mitochondrial DNA in benign and malignant ovarian tumors. Obstet. Gynecol. 112(4), 843–850 (2008).
  • Kamat AA, Baldwin M, Urbauer D et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer 116(8), 1918–1925 (2010).
  • Paci M, Maramotti S, Bellesia E et al. Circulating plasma DNA as diagnostic biomarker in non-small cell lung cancer. Lung Cancer 64(1), 92–97 (2009).
  • Ulivi P, Mercatali L, Casoni GL et al. Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS ONE 8(2), e57401 (2013).
  • Yoon KA, Park S, Lee SH, Kim JH, Lee JS. Comparison of Circulating Plasma DNA Levels between Lung Cancer Patients and Healthy Controls. J. Mol. Diagn. 11(3), 182–185 (2009).
  • Schwarzenbach H, Alix-Panabières C, Müller I et al. Cell-free tumor dna in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin. Cancer Res. 15(3), 1032–1038 (2009).
  • Hauser S, Kogej M, Fechner G et al. Cell-free serum DNA in patients with bladder cancer: results of a prospective multicenter study. Anticancer Res. 32(8), 3119–3124 (2012).
  • Ellinger J, Muller DC, Muller SC et al. Circulating mitochondrial DNA in serum: a universal diagnostic biomarker for patients with urological malignancies. Urol. Oncol. 30(4), 509–515 (2012).
  • Mead R, Duku M, Bhandari P, Cree IA. Circulating tumour markers can define patients with normal colons, benign polyps, and cancers. Br. J. Cancer 105(2), 239–245 (2011).
  • Salani R, Davidson B, Fiegl M et al. Measurement of cyclin E genomic copy number and strand length in cell-free DNA distinguish malignant versus benign effusions. Clin. Cancer Res. 13(19), 5805–5809 (2007).
  • Page K, Hava N, Ward B et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br. J. Cancer 104(8), 1342–1348 (2011).
  • Heitzer E, Auer M, Hoffmann EM et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer 133(2), 346–356 (2013).
  • Higgins MJ, Jelovac D, Barnathan E et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18(12), 3462–3469 (2012).
  • Dobrzycka B, Terlikowski SJ, Mazurek A et al. Circulating free DNA, p53 antibody and mutations of KRAS gene in endometrial cancer. Int. J. Cancer 127(3), 612–621 (2010).
  • Spindler KL, Pallisgaard N, Vogelius I, Jakobsen A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 18(4), 1177–1185 (2012).
  • Igetei R, Otegbayo JA, Ndububa DA et al. Detection of p53 codon 249 mutation in Nigerian patients with hepatocellular carcinoma using a novel evaluation of cell-free DNA. Ann. Hepatol. 7(4), 339–344 (2008).
  • Rosell R, Moran T, Queralt C et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361(10), 958–967 (2009).
  • Akca H, Demiray A, Yaren A et al. Utility of serum DNA and pyrosequencing for the detection of EGFR mutations in non-small cell lung cancer. Cancer Genet. 206(3), 73–80 (2013).
  • Wang S, An T, Wang J et al. Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 16(4), 1324–1330 (2010).
  • Jian G, Songwen Z, Ling Z et al. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 136(9), 1341–1347 (2010).
  • Goto K, Ichinose Y, Ohe Y et al. Epidermal growth factor receptor mutation status in circulating free DNA in serum: from IPASS, a phase III study of gefitinib or carboplatin/paclitaxel in non-small cell lung cancer. J. Thorac. Oncol. 7(1), 115–121 (2012).
  • Nygaard AD, Garm Spindler KL, Pallisgaard N, Andersen RF, Jakobsen A. The prognostic value of KRAS mutated plasma DNA in advanced non-small cell lung cancer. Lung Cancer 79(3), 312–317 (2013).
  • Shinozaki M, O'Day SJ, Kitago M et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin. Cancer Res. 13(7), 2068–2074 (2007).
  • Board RE, Ellison G, Orr MC et al. Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br. J. Cancer 101(10), 1724–1730 (2009).
  • Forshew T, Murtaza M, Parkinson C et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4(136), 136ra168 (2012).
  • Dobrzycka B, Terlikowski SJ, Kinalski M et al. Circulating free DNA and p53 antibodies in plasma of patients with ovarian epithelial cancers. Ann. Oncol. 22(5), 1133–1140 (2011).
  • Heitzer E, Ulz P, Belic J et al. Tumor associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 5(4), 30 (2013).
  • Shaw JA, Page K, Blighe K et al. Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Res. 22(2), 220–231 (2012).
  • Schwarzenbach H, Pantel K, Kemper B et al. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res. 11(5), R71 (2009).
  • Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro-oncol. 12(2), 173–180 (2010).
  • Schwarzenbach H, Goekkurt E, Pantel K, Aust DE, Stoehlmacher J. Molecular analysis of the polymorphisms of thymidylate synthase on cell-free circulating DNA in blood of patients with advanced colorectal carcinoma. Int. J. Cancer 127(4), 881–888 (2010).
  • Kuhlmann JD, Schwarzenbach H, Wimberger P et al. LOH at 6q and 10q in fractionated circulating DNA of ovarian cancer patients is predictive for tumor cell spread and overall survival. BMC Cancer 12, 325 (2012).
  • Schwarzenbach H, Chun FK, Muller I et al. Microsatellite analysis of allelic imbalance in tumour and blood from patients with prostate cancer. BJU Int. 102(2), 253–258 (2008).
  • Van der Auwera I, Elst HJ, Van Laere SJ et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br. J. Cancer 100(8), 1277–1286 (2009).
  • Sharma G, Mirza S, Parshad R et al. Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci. 87(3–4), 83–91 (2010).
  • Sharma G, Mirza S, Parshad R et al. CpG hypomethylation of MDR1 gene in tumor and serum of invasive ductal breast carcinoma patients. Clin. Biochem. 43(4–5), 373–379 (2010).
  • Radpour R, Barekati Z, Kohler C et al. Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. PLoS ONE 6(1), e16080 (2011).
  • Yamamoto N, Nakayama T, Kajita M et al. Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Res. Treat. 132(1), 165–173 (2011).
  • Lee JJ, Ko E, Cho J et al. Methylation and immunoexpression of p16(INK4a) tumor suppressor gene in primary breast cancer tissue and their quantitative p16(INK4a) hypermethylation in plasma by real-time PCR. Korean J. Pathol. 46(6), 554–561 (2012).
  • Sturgeon SR, Balasubramanian R, Schairer C et al. Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls. Epigenetics 7(11), 1258–1267 (2012).
  • Kloten V, Becker B, Winner K et al. Promoter hypermethylation of the tumor-suppressor genes ITIH5, DKK3, and RASSF1A as novel biomarkers for blood-based breast cancer screening. Breast Cancer Res. 15(1), R4 (2013).
  • Chimonidou M, Tzitzira A, Strati A et al. CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin. Biochem. 46(3), 235–240 (2013).
  • Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin. Chem. 59(1), 270–279 (2013).
  • Mirza S, Sharma G, Parshad R et al. Clinical significance of Stratifin, ERalpha and PR promoter methylation in tumor and serum DNA in Indian breast cancer patients. Clin. Biochem. 43(4–5), 380–386 (2010).
  • Matuschek C, Bolke E, Lammering G et al. Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur. J. Med. Res. 15, 277–286 (2010).
  • Gobel G, Auer D, Gaugg I et al. Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Res. Treat. 130(1), 109–117 (2011).
  • Fujita N, Nakayama T, Yamamoto N et al. Methylated DNA and total DNA in serum detected by one-step methylation-specific PCR is predictive of poor prognosis for breast cancer patients. Oncology 83(5), 273–282 (2012).
  • Grutzmann R, Molnar B, Pilarsky C et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS ONE 3(11), e3759 (2008).
  • deVos T, Tetzner R, Model F et al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem. 55(7), 1337–1346 (2009).
  • Li M, Chen WD, Papadopoulos N et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27(9), 858–863 (2009).
  • Lange CP, Campan M, Hinoue T et al. Genome-scale discovery of DNA-methylation biomarkers for blood-based detection of colorectal cancer. PLoS ONE 7(11), e50266 (2012).
  • Hibi K, Mizukami H, Saito M et al. FBN2 methylation is detected in the serum of colorectal cancer patients with hepatic metastasis. Anticancer Res. 32(10), 4371–4374 (2012).
  • Church TR, Wandell M, Lofton-Day C et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. doi:10.1136/gutjnl-2012-304149 (2013) ( Epub ahead of print).
  • Philipp AB, Stieber P, Nagel D et al. Prognostic role of methylated free circulating DNA in colorectal cancer. Int. J. Cancer. 131(10), 2308–2319 (2012).
  • Abudukadeer A, Bakry R, Goebel G et al. Clinical Relevance of CDH1 and CDH13 DNA-methylation in serum of cervical cancer patients. Int. J. Mol. Sci. 13(7), 8353–8363 (2012).
  • Balgkouranidou I, Karayiannakis A, Matthaios D et al. Assessment of SOX17 DNA methylation in cell free DNA from patients with operable gastric cancer. Association with prognostic variables and survival. Clin. Chem. Lab Med. 51(7), 1505–1510 (2013).
  • Sun FK, Fan YC, Zhao J et al. Detection of TFPI2 methylation in the serum of hepatocellular carcinoma patients. Dig. Dis. Sci. 58(4), 1010–1015 (2013).
  • Lee SM, Park JY, Kim DS. Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer. Mol. Cells 34(2), 171–176 (2012).
  • Vinayanuwattikun C, Winayanuwattikun P, Chantranuwat P, Mutirangura A, Sriuranpong V. The impact of non-tumor-derived circulating nucleic acids implicates the prognosis of non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 139(1), 67–76 (2013).
  • Lo Nigro C, Wang H, McHugh A et al. Methylated tissue factor pathway inhibitor 2 (TFPI2) DNA in serum is a biomarker of metastatic melanoma. J. Invest. Dermatol. 133(5), 1278–1285 (2013).
  • de Martino M, Klatte T, Haitel A, Marberger M. Serum cell-free DNA in renal cell carcinoma: a diagnostic and prognostic marker. Cancer 118(1), 82–90 (2012).
  • Ellinger J, Haan K, Heukamp LC et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 68(1), 42–49 (2008).
  • Schwarzenbach H, Chun FK, Isbarn H, Huland H, Pantel K. Genomic profiling of cell-free DNA in blood and bone marrow of prostate cancer patients. J. Cancer Res. Clin. Oncol. 137(5), 811–819 (2011).
  • Dumache R, Puiu M, Minciu R et al. Retinoic acid receptor beta2 (RARbeta2): nonivasive biomarker for distinguishing malignant versus benign prostate lesions from bodily fluids. Chirurgia (Bucur). 107(6), 780–784 (2012).
  • Bondurant AE, Huang Z, Whitaker RS et al. Quantitative detection of RASSF1A DNA promoter methylation in tumors and serum of patients with serous epithelial ovarian cancer. Gynecol. Oncol. 123(3), 581–587 (2011).
  • Zhang Q, Hu G, Yang Q et al. A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol. Oncol. 130(1), 132–139 (2013).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.