331
Views
13
CrossRef citations to date
0
Altmetric
Theme: General - Reviews

Skinomics: past, present and future for diagnostic microarray studies in dermatology

Pages 885-894 | Published online: 09 Jan 2014

References

  • Hogeweg P, Hesper B. Interactive instruction on population interactions. Comput. Biol. Med. 8(4), 319–327 (1978).
  • Brown SM. Bioinformatics becomes respectable. Biotechniques 34(6), 1124–1127 (2003).
  • Hubbard T. Biological information: making it accessible and integrated (and trying to make sense of it). Bioinformatics 18( Suppl. 18), S140 (2002).
  • Flicek P, Ahmed I, Amode MR et al. Ensembl 2013. Nucleic Acids Res. 41(Database issue), D48–D55 (2013).
  • Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 41(Database issue), D8–D20 (2013).
  • Reimers M, Carey VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol. 411, 119–134 (2006).
  • Kouskoumvekaki I, Shublaq N, Brunak S. Facilitating the use of large-scale biological data and tools in the era of translational bioinformatics. Brief Bioinform. 1, 1 (2013).
  • Haqq C, Nosrati M, Sudilovsky D et al. The gene expression signatures of melanoma progression. Proc. Natl Acad. Sci. USA 102(17), 6092–6097 (2005).
  • Talantov D, Mazumder A, Yu JX et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin. Cancer Res. 11(20), 7234–7242 (2005).
  • Stark MS, Tyagi S, Nancarrow DJ et al. Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS ONE. 5(3), e9685 (2010).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995).
  • Curto EV, Lambert GW, Davis RL, Wilborn TW, Dooley TP. Biomarkers of human skin cells identified using Derm Array DNA arrays and new bioinformatics methods. Biochem. Biophys. Res. Commun. 291(4), 1052–1064 (2002).
  • Barrett T, Suzek TO, Troup DB et al. NCBI GEO: mining millions of expression profiles--database and tools. Nucleic Acids Res. 33(Database issue), D562–D566 (2005).
  • Irizarry RA, Warren D, Spencer F et al. Multiple-laboratory comparison of microarray platforms. Nat. Methods 2(5), 345–350 (2005).
  • Iyer VR, Eisen MB, Ross DT et al. The transcriptional program in the response of human fibroblasts to serum. Science 283(5398), 83–87 (1999).
  • Robbins PB, Sheu SM, Goodnough JB, Khavari PA. Impact of laminin 5 beta3 gene versus protein replacement on gene expression patterns in junctional epidermolysis bullosa. Hum. Gene Ther. 12(11), 1443–1448 (2001).
  • Hinata K, Gervin AM, Jennifer Zhang Y, Khavari PA. Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene. 22(13), 1955–1964 (2003).
  • Noh M, Yeo H, Ko J, Kim HK, Lee CH. MAP17 is associated with the T-helper cell cytokine-induced down-regulation of filaggrin transcription in human keratinocytes. Exp. Dermatol. 19(4), 355–362 (2010).
  • Morhenn VB, Chang EY, Rheins LA. A noninvasive method for quantifying and distinguishing inflammatory skin reactions. J. Am. Acad. Dermatol. 41(5 Pt 1), 687–692 (1999).
  • Wong R, Tran V, Morhenn V et al. Use of RT-PCR and DNA microarrays to characterize RNA recovered by non-invasive tape harvesting of normal and inflamed skin. J. Invest. Dermatol. 123(1), 159–167 (2004).
  • Wachsman W, Morhenn V, Palmer T et al. Noninvasive genomic detection of melanoma. Br. J. Dermatol. 164(4), 797–806 (2011).
  • DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet. 14(4), 457–460 (1996).
  • Nambiar S, Mirmohammadsadegh A, Doroudi R et al. Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch. Dermatol. 141(2), 165–173 (2005).
  • Bloethner S, Chen B, Hemminki K et al. Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis 26(7), 1224–1232 (2005).
  • Busam KJ, Zhao H, Coit DG et al. Distinction of desmoplastic melanoma from non-desmoplastic melanoma by gene expression profiling. J. Invest. Dermatol. 124(2), 412–418 (2005).
  • Hoek K, Rimm DL, Williams KR et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 64(15), 5270–5282 (2004).
  • Gast A, Scherer D, Chen B et al. Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer. 49(8), 733–745 (2010).
  • Conway K, Edmiston SN, Khondker ZS et al. DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res. 24(2), 352–360 (2011).
  • Hou P, Liu D, Dong J, Xing M. The BRAF(V600E) causes widespread alterations in gene methylation in the genome of melanoma cells. Cell Cycle 11(2), 286–295(2012).
  • Couts KL, Anderson EM, Gross MM, Sullivan K, Ahn NG. Oncogenic B-Raf signaling in melanoma cells controls a network of microRNAs with combinatorial functions. Oncogene 32(15), 1959–1970 (2013).
  • Sand M, Skrygan M, Sand D et al. Comparative microarray analysis of microRNA expression profiles in primary cutaneous malignant melanoma, cutaneous malignant melanoma metastases, and benign melanocytic nevi. Cell Tissue Res. 351(1), 85–98 (2013).
  • Luo Y, Robinson S, Fujita J et al. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma. PLoS One. 6(6), e20971 (2011).
  • Leidinger P, Keller A, Borries A et al. High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10, 262 (2010).
  • Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, Lee PP. Down-regulation of the interferon signaling pathway in T lymphocytes from patients with metastatic melanoma. PLoS Med. 4(5), e176 (2007).
  • Zhao J, Grant SF. Advances in whole genome sequencing technology. Curr. Pharm. Biotechnol. 4, 4 (2010).
  • Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum. Mol. Genet. 19(R2), R188–R196 (2010).
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009).
  • Stahl PL, Stranneheim H, Asplund A, Berglund L, Ponten F, Lundeberg J. Sun-induced nonsynonymous p53 mutations are extensively accumulated and tolerated in normal appearing human skin. J. Invest. Dermatol. 131(2), 504–508 (2011).
  • Spittle C, Ward MR, Nathanson KL et al. Application of a BRAF pyrosequencing assay for mutation detection and copy number analysis in malignant melanoma. J. Mol. Diagn. 9(4), 464–471 (2007).
  • Widmer DS, Cheng PF, Eichhoff OM et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 25(3), 343–353 (2012).
  • Schramm SJ, Campain AE, Scolyer RA, Yang YH, Mann GJ. Review and cross-validation of gene expression signatures and melanoma prognosis. J. Invest. Dermatol. 132(2), 274–283 (2012).
  • Mithani SK, Smith IM, Califano JA. Use of integrative epigenetic and cytogenetic analyses to identify novel tumor-suppressor genes in malignant melanoma. Melanoma Res. 21(4), 298–307 (2011).
  • Liu W, Peng Y, Tobin DJ. A new 12-gene diagnostic biomarker signature of melanoma revealed by integrated microarray analysis. PeerJ. 1, e49 (2013).
  • Hill VK, Gartner JJ, Samuels Y, Goldstein AM. The Genetics of Melanoma: Recent Advances. Annu. Rev. Genomics Hum. Genet. 12, 12 (2013).
  • Bowcock AM, Krueger JG. Getting under the skin: the immunogenetics of psoriasis. Nat. Rev. Immunol. 5(9), 699–711 (2005).
  • Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet 370(9583), 263–271 (2007).
  • Schon MP, Boehncke WH. Psoriasis. N. Med. 352(18), 1899–1912 (2005).
  • Nair RP, Duffin KC, Helms C et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat. Genet. 41(2), 199–204 (2009).
  • Zhang XJ, Huang W, Yang S et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41(2), 205–210 (2009).
  • de Cid R, Riveira-Munoz E, Zeeuwen PL et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41(2), 211–215 (2009).
  • Strange A, Capon F, Spencer CC et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42(11), 985–990 (2010).
  • Stuart PE, Nair RP, Ellinghaus E et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 42(11), 1000–1004 (2010).
  • Ellinghaus E, Ellinghaus D, Stuart PE et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42(11), 991–995 (2010).
  • Sun LD, Cheng H, Wang ZX et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat. Genet. 42(11), 1005–1009 (2010).
  • Huffmeier U, Uebe S, Ekici AB et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nat. Genet. 42(11), 996–999 (2010).
  • Tsoi LC, Spain SL, Knight J et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44(12), 1341–1348 (2012).
  • Julia A, Tortosa R, Hernanz JM et al. Risk variants for psoriasis vulgaris in a large case-control collection and association with clinical subphenotypes. Hum. Mol. Genet., 21(20), 4549–4557 (2012).
  • Zhou X, Krueger JG, Kao MC et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol. Genomics 13(1), 69–78 (2003).
  • Zaba LC, Suarez-Farinas M, Fuentes-Duculan J et al. Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J. Allergy Clin. Immunol. 124(5), 1022–1010. e1021–1395 (2009).
  • Zaba LC, Fuentes-Duculan J, Eungdamrong NJ et al. Identification of TNF-related apoptosis-inducing ligand and other molecules that distinguish inflammatory from resident dendritic cells in patients with psoriasis. J. Allergy Clin. Immunol. 125(6), 1261–1268, e1269 (2010).
  • Suarez-Farinas M, Shah KR, Haider AS, Krueger JG, Lowes MA. Personalized medicine in psoriasis: developing a genomic classifier to predict histological response to Alefacept. BMC Dermatol. 10, 1 (2010).
  • Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34(4), 174–181 (2013).
  • Suarez-Farinas M, Fuentes-Duculan J, Lowes MA, Krueger JG. Resolved psoriasis lesions retain expression of a subset of disease-related genes. J. Invest. Dermatol. 131(2), 391–400 (2011).
  • Haider AS, Lowes MA, Gardner H et al. Novel insight into the agonistic mechanism of alefacept in vivo: differentially expressed genes may serve as biomarkers of response in psoriasis patients. J. Immunol. 178(11), 7442–7449. (2007).
  • Haider AS, Lowes MA, Suarez-Farinas M et al. Cellular genomic maps help dissect pathology in human skin disease. J. Invest. Dermatol. 128(3), 606–615 (2008).
  • Haider AS, Peters SB, Kaporis H et al. Genomic analysis defines a cancer-specific gene expression signature for human squamous cell carcinoma and distinguishes malignant hyperproliferation from benign hyperplasia. J. Invest. Dermatol. 126(4), 869–881 (2006).
  • Gudjonsson JE, Ding J, Johnston A et al. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J. Invest. Dermatol. 130(7), 1829–1840 (2010).
  • Suarez-Farinas M, Li K, Fuentes-Duculan J, Hayden K, Brodmerkel C, Krueger JG. Expanding the psoriasis disease profile: interrogation of the skin and serum of patients with moderate-to-severe psoriasis. J. Invest. Dermatol. 132(11), 2552–2564 (2012).
  • Tian S, Krueger JG, Li K et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE 7(9), e44274 (2012).
  • Benson NR, Papenfuss J, Wong R et al. An analysis of select pathogenic messages in lesional and non-lesional psoriatic skin using non-invasive tape harvesting. J. Invest. Dermatol. 126(10), 2234–2241 (2006).
  • Li D, Turi TG, Schuck A, Freedberg IM, Khitrov G, Blumenberg M. Rays and arrays: the transcriptional program in the response of human epidermal keratinocytes to UVB illumination. FASEB J. 15(13), 2533–2535 (2001).
  • Sesto A, Navarro M, Burslem F, Jorcano JL. Analysis of the ultraviolet B response in primary human keratinocytes using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 99(5), 2965–2970 (2002).
  • Howell BG, Wang B, Freed I, Mamelak AJ, Watanabe H, Sauder DN. Microarray analysis of UVB-regulated genes in keratinocytes: downregulation of angiogenesis inhibitor thrombospondin-1. J. Dermatol. Sci. 34(3), 185–194 (2004).
  • Enk CD, Shahar I, Amariglio N, Rechavi G, Kaminski N, Hochberg M. Gene expression profiling of in vivo UVB-irradiated human epidermis. Photodermatol. Photoimmunol. Photomed. 20(3), 129–137 (2004).
  • Enk CD, Jacob-Hirsch J, Gal H et al. The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes. Oncogene 25(18), 2601–2614 (2006).
  • Koike M, Shiomi T, Koike A. Identification of Skin injury-related genes induced by ionizing radiation in human keratinocytes using cDNA microarray. J. Radiat. Res. (Tokyo). 46(2), 173–184 (2005).
  • Lamartine J, Franco N, Le Minter P et al. Activation of an energy providing response in human keratinocytes after gamma irradiation. J. Cell. Biochem. 95(3), 620–631 (2005).
  • Lee DD, Stojadinovic O, Krzyzanowska A, Vouthounis C, Blumenberg M, Tomic-Canic M. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J. Cell. Physiol. 220(2), 427–439. (2009).
  • Stojadinovic O, Lee B, Vouthounis C et al. Novel genomic effects of glucocorticoids in epidermal keratinocytes: inhibition of apoptosis, interferon-gamma pathway, and wound healing along with promotion of terminal differentiation. J. Biol. Chem. 282(6), 4021–4034 (2007).
  • Tomic-Canic M, Stojadinovic O, Lee B, Walsh R, Blumenberg M. Nexus between epidermolysis bullosa and transcriptional regulation by thyroid hormone in epidermal keratinocytes. Clin. Transl. Sci. 1(1), 45–49 (2008).
  • Banno T, Adachi M, Mukkamala L, Blumenberg M. Unique keratinocyte-specific effects of interferon-gamma that protect skin from viruses, identified using transcriptional profiling. Antivir. Ther. 8(6), 541–554 (2003).
  • Banno T, Gazel A, Blumenberg M. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling. J. Biol. Chem. 279(31), 32633–32642 (2004).
  • Finelt N, Gazel A, Gorelick S, Blumenberg M. Transcriptional responses of human epidermal keratinocytes to Oncostatin-M. Cytokine 31(4), 305–313 (2005).
  • Gazel A, Rosdy M, Bertino B, Tornier C, Sahuc F, Blumenberg M. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J. Invest. Dermatol. 17, 17 (2006).
  • Molenda M, Mukkamala L, Blumenberg M. Interleukin IL-12 blocks a specific subset of the transcriptional profile responsive to UVB in epidermal keratinocytes. Mol. Immunol. 43(12), 1933–1940 (2006).
  • Lopez-Pajares V, Yan K, Zarnegar BJ, Jameson KL, Khavari PA. Genetic pathways in disorders of epidermal differentiation. Trends Genet. 29(1), 31–40 (2013).
  • Radoja N, Gazel A, Banno T, Yano S, Blumenberg M. Transcriptional profiling of epidermal differentiation. Physiol. Genomics 5, 5 (2006).
  • Gulati N, Krueger JG, Suarez-Farinas M, Mitsui H. Creation of differentiation-specific genomic maps of human epidermis through laser capture microdissection. J. Invest. Dermatol. 18(10), 190 (2013).
  • Walsh R, Blumenberg M. EPH-2B, acting as an extracellular ligand, induces differentiation markers in epidermal keratinocytes. J. Cell. Physiol. 1(10), 22968 (2011).
  • Walsh R, Blumenberg M. Specific and shared targets of ephrin A signaling in epidermal keratinocytes. J. Biol. Chem. 286(11), 9419–9428 (2011).
  • Gazel A, Banno T, Walsh R, Blumenberg M. Inhibition of JNK promotes differentiation of epidermal keratinocytes. J. Biol. Chem. 28, 28 (2006).
  • Gazel A, Blumenberg M. Transcriptional effects of inhibiting epidermal growth factor receptor in keratinocytes. Dermatologica Sinica 31(1), 107–119 (2013).
  • Blumenberg M. Profiling and metaanalysis of epidermal keratinocytes responses to epidermal growth factor. BMC Genomics 14, 85 (2013).
  • Coda AB, Sinha AA. Integration of genome-wide transcriptional and genetic profiles provides insights into disease development and clinical heterogeneity in alopecia areata. Genomics 98(6), 431–439 (2011).
  • Ralfkiaer U, Hagedorn PH, Bangsgaard N et al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118(22), 5891–5900 (2011).
  • Yu R, Broady R, Huang Y et al. Transcriptome analysis reveals markers of aberrantly activated innate immunity in vitiligo lesional and non-lesional skin. PLoS ONE. 7(12), e51040 (2012).
  • Shuda M, Arora R, Kwun HJ et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int. J. Cancer 125(6), 1243–1249 (2009).
  • Paulson KG, Lemos BD, Feng B et al. Array-CGH reveals recurrent genomic changes in Merkel cell carcinoma including amplification of L-Myc. J. Invest. Dermatol. 129(6), 1547–1555 (2009).
  • Harms PW, Patel RM, Verhaegen ME et al. Distinct gene expression profiles of viral- and nonviral-associated merkel cell carcinoma revealed by transcriptome analysis. J. Invest. Dermatol. 133(4), 936–945 (2013).
  • Kaufman CK, Zhou P, Pasolli HA et al. GATA-3: an unexpected regulator of cell lineage determination in skin Dissection of a complex enhancer element: maintenance of keratinocyte specificity but loss of differentiation specificity. Genes Dev. 17(17), 2108–2122 (2003).
  • Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem cell niche in skin. Science 303(5656), 359–363 (2004).
  • Lo Celso C, Berta MA, Braun KM et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells 26(5), 1241–1252 (2008).
  • Berta MA, Baker CM, Cottle DL, Watt FM. Dose and context dependent effects of Myc on epidermal stem cell proliferation and differentiation. EMBO Mol. Med. 2(1), 16–25(2010).
  • Ohyama M, Terunuma A, Tock CL et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J. Clin. Invest. 116(1), 249–260 (2006).
  • Garza LA, Yang CC, Zhao T et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Invest. 121(2), 613–622 (2011).
  • Kocer SS, Djuric PM, Bugallo MF, Simon SR, Matic M. Transcriptional profiling of putative human epithelial stem cells. BMC Genomics 9, 359 (2008).
  • Schluter H, Paquet-Fifield S, Gangatirkar P, Li J, Kaur P. Functional characterization of quiescent keratinocyte stem cells and their progeny reveals a hierarchical organization in human skin epidermis. Stem Cells 29(8), 1256–1268 (2011).
  • Tan DW, Jensen KB, Trotter MW, Connelly JT, Broad S, Watt FM. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells. Development 140(7), 1433–1444 (2013).
  • Kretz M, Webster DE, Flockhart RJ et al. Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev. 26(4), 338–343 (2012).
  • Kretz M, Siprashvili Z, Chu C et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 493(7431), 231–235 (2013).
  • Luis NM, Morey L, Mejetta S et al. Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. Cell. Stem Cell 9(3), 233–246 (2011).
  • Aasen T, Raya A, Barrero MJ et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26(11), 1276–1284 (2008).
  • Tomic-Canic M, Brem H. Gene array technology and pathogenesis of chronic wounds. Am. J. Surg. 188(1A Suppl.), 67–72 (2004).
  • Nuutila K, Siltanen A, Peura M et al. Human skin transcriptome during superficial cutaneous wound healing. Wound Repair Regen. 20(6), 830–839 (2012).
  • Deonarine K, Panelli MC, Stashower ME et al. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 5, 11 (2007).
  • Morasso MI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol. Cell. 97(3), 173–183 (2005).
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117(5), 1219–1222 (2007).
  • Charles CA, Tomic-Canic M, Vincek V et al. A gene signature of nonhealing venous ulcers: potential diagnostic markers. J. Am. Acad. Dermatol. 59(5), 758–771 (2008).
  • Lebrun E, Tomic-Canic M, Kirsner RS. The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen. 18(5), 433–438(2010).
  • Pastar I, Khan AA, Stojadinovic O et al. Induction of specific microRNAs inhibits cutaneous wound healing. J. Biol. Chem. 287(35), 29324–29335 (2012).
  • Harsha A, Stojadinovic O, Brem H et al. ADAM12: a potential target for the treatment of chronic wounds. J. Mol. Med. (Berl). 86(8), 961–969(2008).
  • Grice EA, Segre JA. Interaction of the microbiome with the innate immune response in chronic wounds. Adv. Exp. Med. Biol. 946, 55–68 (2012).
  • Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci USA 104(8), 2927–2932(2007).
  • Grice EA, Kong HH, Renaud G et al. A diversity profile of the human skin microbiota. Genome Res. 18(7), 1043–1050 (2008).
  • Gao Z, Perez-Perez GI, Chen Y, Blaser MJ. Quantitation of major human cutaneous bacterial and fungal populations. J. Clin. Microbiol. 48(10), 3575–3581(2010).
  • Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J. Clin. Microbiol. 44(8), 2933–2941 (2006).
  • Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3(7), e2719 (2008).
  • Paulino LC, Tseng CH, Blaser MJ. Analysis of Malassezia microbiota in healthy superficial human skin and in psoriatic lesions by multiplex real-time PCR. FEMS Yeast Res., 8(3), 460–471 (2008).
  • Grice EA, Kong HH, Conlan S et al. Topographical and temporal diversity of the human skin microbiome. Science 324(5931), 1190–1192 (2009).
  • Grice EA, Snitkin ES, Yockey LJ, Bermudez DM, Liechty KW, Segre JA. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc. Natl Acad. Sci USA 107(33), 14799–14804 (2010).
  • Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc. Natl Acad. Sci USA 108(26), 10544–10549. (2011).
  • Ayers D, Platt M, Javad F, Day PJ. Human papilloma virus strain detection utilising custom-designed oligonucleotide microarrays. Methods Mol. Biol. 688, 75–95. (2011).
  • Findley K, Oh J, Yang J et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 498(7454), 367–370 (2013).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.