496
Views
20
CrossRef citations to date
0
Altmetric
Theme: Biomarker Diagnostics - Reviews

Molecular biomarkers of neurodegeneration

&
Pages 845-861 | Published online: 09 Jan 2014

References

  • Kreisl WC, Jenko KJ, Hines CS et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J. Cereb. Blood Flow Metab. 33(1), 53–58 (2013).
  • Weiner MW, Aisen PS, Jack CR Jr et al. The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimers Dement. 6(3), 202–211.e7 (2010).
  • Parkinson Progression Marker Initiative. The parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011).
  • Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat. Rev. Drug Discov. 2(7), 566–580 (2003).
  • Segal MB. The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol. Neurobiol. 20(2), 183–196 (2000).
  • Compston A, Coles A. Multiple sclerosis. Lancet 359(9313), 1221–1231 (2002).
  • Koch M, Heersema D, Mostert J, Teelken A, De Keyser J. Cerebrospinal fluid oligoclonal bands and progression of disability in multiple sclerosis. Eur. J. Neurol. 14(7), 797–800 (2007).
  • McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50(1), 121–127 (2001).
  • Polman CH, Reingold SC, Banwell B et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69(2), 292–302 (2011).
  • Keegan BM, Noseworthy JH. Multiple sclerosis. Annu. Rev. Med. 53, 285–302 (2002).
  • Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55(4), 458–468 (2004).
  • Neumann H. Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Curr. Opin. Neurol. 16(3), 267–273 (2003).
  • Bo L, Geurts JJ, Mork SJ, van der Valk P. Grey matter pathology in multiple sclerosis. Acta Neurol. Scand. Suppl. 183, 48–50 (2006).
  • Compston A, Coles A. Multiple sclerosis. Lancet 372(9648), 1502–1517 (2008).
  • de Carvalho MA, Pinto S, Swash M. Paraspinal and limb motor neuron involvement within homologous spinal segments in ALS. Clin. Neurophysiol. 119(7), 1607–1613 (2008).
  • Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 3, CD001447 (2012).
  • Millecamps S, Boillee S, Le Ber I et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS-related genes. J. Med. Genet. 49(4), 258–263 (2012).
  • Harms MM, Miller TM, Baloh RH. TARDBP-Related amyotrophic lateral sclerosis. In: GeneReviews. Pagon RA, Adam MP, Bird TD, Dolan CR, Fong CT, Stephens K ( Eds). University of Washington, Seattle, Seattle WA, USA (1993).
  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2), 245–256 (2011).
  • Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2), 257–268 (2011).
  • Lee SE. Guam dementia syndrome revisited in 2011. Curr. Opin. Neurol. 24(6), 517–524 (2011).
  • Rogers N, Paine S, Bedford L, Layfield R. Review: the ubiquitin-proteasome system: contributions to cell death or survival in neurodegeneration. Neuropathol. Appl. Neurobiol. 36(2), 113–124 (2010).
  • Blauw HM, Barnes CP, van Vught PW et al. SMN1 gene duplications are associated with sporadic ALS. Neurology 78(11), 776–780 (2012).
  • Kiernan MC, Vucic S, Cheah BC et al. Amyotrophic lateral sclerosis. Lancet 377(9769), 942–955 (2011).
  • Dachsel JC, Farrer MJ. LRRK2 and Parkinson disease. Arch. Neurol. 67(5), 542–547 (2010).
  • Marras C, Lang AE. Outcome measures for clinical trials in Parkinson’s disease: achievements and shortcomings. Expert Rev. Neurother. 4(6), 985–993 (2004).
  • Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 51(6), 745–752 (1988).
  • Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 56(1), 33–39 (1999).
  • Chaudhuri KR, Odin P. The challenge of non-motor symptoms in Parkinson’s disease. Prog. Brain Res. 184, 325–341 (2010).
  • Chaudhuri KR, Healy DG, Schapira AH, National Institute for Clinical Excellence. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 5(3), 235–245 (2006).
  • Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H. NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci. Lett. 239(1), 45–48 (1997).
  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature 388(6645), 839–840 (1997).
  • Goldman JE, Yen SH, Chiu FC, Peress NS. Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221(4615), 1082–1084 (1983).
  • Lennox G, Lowe J, Morrell K, Landon M, Mayer RJ. Anti-ubiquitin immunocytochemistry is more sensitive than conventional techniques in the detection of diffuse Lewy body disease. J. Neurol. Neurosurg. Psychiatry 52(1), 67–71 (1989).
  • Braak H, Del Tredici K. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70(20), 1916–1925 (2008).
  • Doty RL. The olfactory system and its disorders. Semin. Neurol. 29(1), 74–81 (2009).
  • Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: the dual hit theory revisited. Ann. N. Y. Acad. Sci. 1170, 615–622 (2009).
  • Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet 373(9680), 2055–2066 (2009).
  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7), 939–944 (1984).
  • Albert MS, DeKosky ST, Dickson D et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7(3), 270–279 (2011).
  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet 377(9770), 1019–1031 (2011).
  • Gorman AM. Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J. Cell. Mol. Med. 12(6A), 2263–2280 (2008).
  • Cairns NJ, Lee VM, Trojanowski JQ. The cytoskeleton in neurodegenerative diseases. J. Pathol. 204(4), 438–449 (2004).
  • Galloway PG, Mulvihill P, Perry G. Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am. J. Pathol. 140(4), 809–822 (1992).
  • Nemani VM, Lu W, Berge V et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 65(1), 66–79 (2010).
  • Nimmrich V, Ebert U. Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Rev. Neurosci. 20(1), 1–12 (2009).
  • Gresle MM, Shaw G, Jarrott B et al. Validation of a novel biomarker for acute axonal injury in experimental autoimmune encephalomyelitis. J. Neurosci. Res. 86(16), 3548–3555 (2008).
  • Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J. Immunol. Methods. 278(1–2), 179–190 (2003).
  • Goldstein ME, Sternberger NH, Sternberger LA. Phosphorylation protects neurofilaments against proteolysis. J. Neuroimmunol. 14(2), 149–160 (1987).
  • Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66(6), 852–856 (2006).
  • Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelso C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J. Neurochem. 67(5), 2013–2018 (1996).
  • Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM. Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur. J. Neurol. 14(12), 1329–1333 (2007).
  • Tortelli R, Ruggieri M, Cortese R et al. Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur. J. Neurol. 19(12), 1561–1567 (2012).
  • Norgren N, Rosengren L, Stigbrand T. Elevated neurofilament levels in neurological diseases. Brain Res. 987(1), 25–31 (2003).
  • Boylan K, Yang C, Crook J et al. Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J. Neurochem. 111(5), 1182–1191 (2009).
  • Boylan KB, Glass JD, Crook JE et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 84(4), 467–472 (2013).
  • Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J. Neurochem. 117(3), 528–537 (2011).
  • Dujmovic I. Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Mult Scler. Int. 2011, 767083 (2011).
  • Tumani H, Teunissen C, Sussmuth S, Otto M, Ludolph AC, Brettschneider J. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev. Mol. Diagn. 8(4), 479–494 (2008).
  • Teunissen CE, Iacobaeus E, Khademi M et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology 72(15), 1322–1329 (2009).
  • Malmestrom C, Haghighi S, Rosengren L, Andersen O, Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61(12), 1720–1725 (2003).
  • Haghighi S, Andersen O, Oden A, Rosengren L. Cerebrospinal fluid markers in MS patients and their healthy siblings. Acta Neurol. Scand. 109(2), 97–99 (2004).
  • Eikelenboom MJ, Petzold A, Lazeron RH et al. Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 60(2), 219–223 (2003).
  • Lycke JN, Karlsson JE, Andersen O, Rosengren LE. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 64(3), 402–404 (1998).
  • Norgren N, Sundstrom P, Svenningsson A, Rosengren L, Stigbrand T, Gunnarsson M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63(9), 1586–1590 (2004).
  • Semra YK, Seidi OA, Sharief MK. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J. Neuroimmunol. 122(1–2), 132–139 (2002).
  • Kuhle J, Regeniter A, Leppert D et al. A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J. Neuroimmunol. 220(1–2), 114–119 (2010).
  • Lim ET, Grant D, Pashenkov M et al. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult. Scler. 10(3), 261–265 (2004).
  • Miyazawa I, Nakashima I, Petzold A, Fujihara K, Sato S, Itoyama Y. High CSF neurofilament heavy chain levels in neuromyelitis optica. Neurology 68(11), 865–867 (2007).
  • Petzold A, Eikelenboom MJ, Keir G et al. Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study. J. Neurol. Neurosurg. Psychiatry 76(2), 206–211 (2005).
  • Rejdak K, Petzold A, Stelmasiak Z, Giovannoni G. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis. Mult. Scler. 14(1), 59–66 (2008).
  • Brettschneider J, Maier M, Arda S et al. Tau protein level in cerebrospinal fluid is increased in patients with early multiple sclerosis. Mult. Scler. 11(3), 261–265 (2005).
  • Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A. Neurofilament protein levels in CSF are increased in dementia. Neurology 52(5), 1090–1093 (1999).
  • Pijnenburg YA, Janssen JC, Schoonenboom NS et al. CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer’s disease and controls. Dement. Geriatr. Cogn. Disord. 23(4), 225–230 (2007).
  • Sjogren M, Rosengren L, Minthon L, Davidsson P, Blennow K, Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 54(10), 1960–1964 (2000).
  • Hu YY, He SS, Wang XC et al. Elevated levels of phosphorylated neurofilament proteins in cerebrospinal fluid of Alzheimer disease patients. Neurosci. Lett. 320(3), 156–160 (2002).
  • Brettschneider J, Petzold A, Schottle D, Claus A, Riepe M, Tumani H. The neurofilament heavy chain (NfH) in the cerebrospinal fluid diagnosis of Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 21(5–6), 291–295 (2006).
  • Petzold A, Keir G, Warren J, Fox N, Rossor MN. A systematic review and meta-analysis of CSF neurofilament protein levels as biomarkers in dementia. Neurodegener. Dis. 4(2–3), 185–194 (2007).
  • Holmberg B, Rosengren L, Karlsson JE, Johnels B. Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson’s disease. Mov. Disord. 13(1), 70–77 (1998).
  • Holmberg B, Johnels B, Ingvarsson P, Eriksson B, Rosengren L. CSF-neurofilament and levodopa tests combined with discriminant analysis may contribute to the differential diagnosis of Parkinsonian syndromes. Parkinsonism Relat. Disord. 8(1), 23–31 (2001).
  • Abdo WF, van de Warrenburg BP, Kremer HP, Bloem BR, Verbeek MM. CSF biomarker profiles do not differentiate between the cerebellar and parkinsonian phenotypes of multiple system atrophy. Parkinsonism Relat. Disord. 13(8), 480–482 (2007).
  • Abdo WF, Bloem BR, Van Geel WJ, Esselink RA, Verbeek MM. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol. Aging 28(5), 742–747 (2007).
  • Abdo WF, De Jong D, Hendriks JC et al. Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov. Disord. 19(5), 571–579 (2004).
  • Svarcova J, Fialova L, Bartos A, Steinbachova M, Malbohan I. Cerebrospinal fluid antibodies to tubulin are elevated in the patients with multiple sclerosis. Eur. J. Neurol. 15(11), 1173–1179 (2008).
  • Fialova L, Bartos A, Soukupova J, Svarcova J, Ridzon P, Malbohan I. Synergy of serum and cerebrospinal fluid antibodies against axonal cytoskeletal proteins in patients with different neurological diseases. Folia Biol. (Praha.) 55(1), 23–26 (2009).
  • Terryberry JW, Thor G, Peter JB. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol. Aging 19(3), 205–216 (1998).
  • de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF. SIRT2 as a therapeutic target for age-related Disorders. Front. Pharmacol. 3, 82 (2012).
  • Simoes-Pires C, Zwick V, Nurisso A, Schenker E, Carrupt PA, Cuendet M. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener. 8, 7– 1326-8-7 (2013).
  • Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G. Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett. 425(2), 225–228 (1998).
  • Fulga TA, Elson-Schwab I, Khurana V et al. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9(2), 139–148 (2007).
  • Sussmuth SD, Tumani H, Ecker D, Ludolph AC. Amyotrophic lateral sclerosis: disease stage related changes of tau protein and S100 beta in cerebrospinal fluid and creatine kinase in serum. Neurosci. Lett. 353(1), 57–60 (2003).
  • Jimenez-Jimenez FJ, Hernanz A, Medina-Acebron S et al. Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 111(2), 114–117 (2005).
  • Sjogren M, Davidsson P, Wallin A et al. Decreased CSF-beta-amyloid 42 in Alzheimer’s disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement. Geriatr. Cogn. Disord. 13(2), 112–118 (2002).
  • Bartosik-Psujek H, Stelmasiak Z. The CSF levels of total-tau and phosphotau in patients with relapsing-remitting multiple sclerosis. J. Neural Transm. 113(3), 339–345 (2006).
  • Bartosik-Psujek H, Archelos JJ. Tau protein and 14-3-3 are elevated in the cerebrospinal fluid of patients with multiple sclerosis and correlate with intrathecal synthesis of IgG. J. Neurol. 251(4), 414–420 (2004).
  • Sussmuth SD, Reiber H, Tumani H. Tau protein in cerebrospinal fluid (CSF): a blood-CSF barrier related evaluation in patients with various neurological diseases. Neurosci. Lett. 300(2), 95–98 (2001).
  • Terzi M, Birinci A, Cetinkaya E, Onar MK. Cerebrospinal fluid total tau protein levels in patients with multiple sclerosis. Acta Neurol. Scand. 115(5), 325–330 (2007).
  • Guimaraes I, Cardoso MI, Sa MJ. Tau protein seems not to be a useful routine clinical marker of axonal damage in multiple sclerosis. Mult. Scler. 12(3), 354–356 (2006).
  • Jimenez-Jimenez FJ, Zurdo JM, Hernanz A et al. Tau protein concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neurol. Scand. 106(6), 351–354 (2002).
  • Hein Nee Maier K, Kohler A, Diem R et al. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci. Lett. 436(1), 72–76 (2008).
  • Valis M, Talab R, Stourac P, Andrys C, Masopust J. Tau protein, phosphorylated tau protein and beta-amyloid42 in the cerebrospinal fluid of multiple sclerosis patients. Neuro Endocrinol. Lett. 29(6), 971–976 (2008).
  • Colucci M, Roccatagliata L, Capello E et al. The 14-3-3 protein in multiple sclerosis: a marker of disease severity. Mult. Scler. 10(5), 477–481 (2004).
  • Brex PA, Gomez-Anson B, Parker GJ et al. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J. Neurol. Sci. 166(1), 16–22 (1999).
  • Constantinescu R, Zetterberg H, Holmberg B, Rosengren L. Levels of brain related proteins in cerebrospinal fluid: an aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat. Disord. 15(3), 205–212 (2009).
  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG. alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10(3), 230–240 (2011).
  • Parnetti L, Chiasserini D, Bellomo G et al. Cerebrospinal fluid Tau/alpha-synuclein ratio in Parkinson’s disease and degenerative dementias. Mov. Disord. 26(8), 1428–1435 (2011).
  • Mollenhauer B, Trenkwalder C, von Ahsen N et al. Beta-amlyoid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement. Geriatr. Cogn. Disord. 22(3), 200–208 (2006).
  • Alves G, Bronnick K, Aarsland D et al. CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: the Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry. 81(10), 1080–1086 (2010).
  • Prikrylova Vranova H, Mares J, Hlustik P et al. Tau protein and beta-amyloid(1–42) CSF levels in different phenotypes of Parkinson’s disease. J. Neural Transm. 119(3), 353–362 (2012).
  • Andreasen N, Blennow K. CSF biomarkers for mild cognitive impairment and early Alzheimer’s disease. Clin. Neurol. Neurosurg. 107(3), 165–173 (2005).
  • Cruchaga C, Kauwe JS, Harari O et al. GWAS of Cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78(2), 256–268 (2013).
  • Mattsson N, Axelsson M, Haghighi S et al. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult. Scler. 15(4), 448–454 (2009).
  • Henriksson T, Barbour RM, Braa S et al. Analysis and quantitation of the beta-amyloid precursor protein in the cerebrospinal fluid of Alzheimer’s disease patients with a monoclonal antibody-based immunoassay. J. Neurochem. 56(3), 1037–1042 (1991).
  • Olsson A, Hoglund K, Sjogren M et al. Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp. Neurol. 183(1), 74–80 (2003).
  • Masliah E, Mallory M, Alford M et al. Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56(1), 127–129 (2001).
  • Jenco JM, Rawlingson A, Daniels B, Morris AJ. Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37(14), 4901–4909 (1998).
  • Davidsson P, Blennow K. Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int. Psychogeriatr. 10(1), 11–23 (1998).
  • Kasuga K, Tokutake T, Ishikawa A et al. Differential levels of alpha-synuclein, beta-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 81(6), 608–610 (2010).
  • Hong Z, Shi M, Chung KA et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133( Pt 3), 713–726 (2010).
  • Mollenhauer B, Cullen V, Kahn I et al. Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp. Neurol. 213(2), 315–325 (2008).
  • Tateno F, Sakakibara R, Kawai T, Kishi M, Murano T. Alpha-synuclein in the cerebrospinal fluid differentiates synucleinopathies (Parkinson Disease, dementia with Lewy bodies, multiple system atrophy) from Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26(3), 213–216 (2012).
  • Tokuda T, Salem SA, Allsop D et al. Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with Parkinson’s disease. Biochem. Biophys. Res. Commun. 349(1), 162–166 (2006).
  • Wennstrom M, Londos E, Minthon L, Nielsen HM. Altered CSF orexin and alpha-synuclein levels in dementia patients. J. Alzheimers Dis. 29(1), 125–132 (2012).
  • Ohrfelt A, Grognet P, Andreasen N et al. Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders-a marker of synapse loss? Neurosci. Lett. 450(3), 332–335 (2009).
  • Aerts MB, Esselink RA, Abdo WF, Bloem BR, Verbeek MM. CSF alpha-synuclein does not differentiate between parkinsonian disorders. Neurobiol. Aging 33(2), 430.e1–430.e3 (2012).
  • Borghi R, Marchese R, Negro A et al. Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci. Lett. 287(1), 65–67 (2000).
  • Foulds PG, Yokota O, Thurston A et al. Post mortem cerebrospinal fluid alpha-synuclein levels are raised in multiple system atrophy and distinguish this from the other alpha-synucleinopathies, Parkinson’s disease and Dementia with Lewy bodies. Neurobiol. Dis. 45(1), 188–195 (2012).
  • Hall S, Ohrfelt A, Constantinescu R et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69(11), 1445–1452 (2012).
  • Doherty MJ, Bird TD, Leverenz JB. Alpha-synuclein in motor neuron disease: an immunohistologic study. Acta Neuropathol. 107(2), 169–175 (2004).
  • Wang H, Wang K, Xu W et al. Cerebrospinal fluid alpha-synuclein levels are elevated in multiple sclerosis and neuromyelitis optica patients during replase. J. Neurochem. 122(1), 19–23 (2012).
  • Mondello S, Buki A, Italiano D, Jeromin A. alpha-Synuclein in CSF of patients with severe traumatic brain injury. Neurology 80(18), 1662–1668 (2013).
  • Baslow MH, Suckow RF, Sapirstein V, Hungund BL. Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J. Mol. Neurosci. 13(1–2), 47–53 (1999).
  • Jasperse B, Jakobs C, Eikelenboom MJ et al. N-acetylaspartic acid in cerebrospinal fluid of multiple sclerosis patients determined by gas-chromatography-mass spectrometry. J. Neurol. 254(5), 631–637 (2007).
  • Khalil M, Enzinger C, Langkammer C et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult. Scler. 19(4), 436–442 (2013).
  • Tortorella C, Ruggieri M, Di Monte E et al. Serum and CSF N-acetyl aspartate levels differ in multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 82(12), 1355–1359 (2011).
  • Simone IL, Ruggieri M, Tortelli R et al. Serum N-acetylaspartate level in amyotrophic lateral sclerosis. Arch. Neurol. 68(10), 1308–1312 (2011).
  • Griffith HR, den Hollander JA, Okonkwo OC, O’Brien T, Watts RL, Marson DC. Brain N-acetylaspartate is reduced in Parkinson disease with dementia. Alzheimer Dis. Assoc. Disord. 22(1), 54–60 (2008).
  • Davidsson P, Jahn R, Bergquist J, Ekman R, Blennow K. Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid: a new biochemical marker for synaptic pathology in Alzheimer disease? Mol. Chem. Neuropathol. 27(2), 195–210 (1996).
  • Mokuno K, Kato K, Kawai K, Matsuoka Y, Yanagi T, Sobue I. Neuron-specific enolase and S-100 protein levels in cerebrospinal fluid of patients with various neurological diseases. J. Neurol. Sci. 60(3), 443–451 (1983).
  • Lamers KJ, van Engelen BG, Gabreels FJ, Hommes OR, Borm GF, Wevers RA. Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurol. Scand. 92(3), 247–251 (1995).
  • Royds JA, Davies-Jones GA, Lewtas NA, Timperley WR, Taylor CB. Enolase isoenzymes in the cerebrospinal fluid of patients with diseases of the nervous system. J. Neurol. Neurosurg. Psychiatry 46(11), 1031–1036 (1983).
  • Blennow K, Wallin A, Ekman R. Neuron specific enolase in cerebrospinal fluid: a biochemical marker for neuronal degeneration in dementia disorders? J. Neural Transm. Park. Dis. Dement. Sect. 8(3), 183–191 (1994).
  • Parnetti L, Palumbo B, Cardinali L et al. Cerebrospinal fluid neuron-specific enolase in Alzheimer’s disease and vascular dementia. Neurosci. Lett. 183(1–2), 43–45 (1995).
  • Cutler NR, Kay AD, Marangos PJ, Burg C. Cerebrospinal fluid neuron-specific enolase is reduced in Alzheimer’s disease. Arch. Neurol. 43(2), 153–154 (1986).
  • Bogdanovic N, Davidsson P, Volkmann I, Winblad B, Blennow K. Growth-associated protein GAP-43 in the frontal cortex and in the hippocampus in Alzheimer’s disease: an immunohistochemical and quantitative study. J. Neural Transm. 107(4), 463–478 (2000).
  • Davidsson P, Puchades M, Blennow K. Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis 20(3), 431–437 (1999).
  • Sjogren M, Davidsson P, Gottfries J et al. The cerebrospinal fluid levels of tau, growth-associated protein-43 and soluble amyloid precursor protein correlate in Alzheimer’s disease, reflecting a common pathophysiological process. Dement. Geriatr. Cogn. Disord. 12(4), 257–264 (2001).
  • Sjogren M, Minthon L, Davidsson P et al. CSF levels of tau, beta-amyloid(1–42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural Transm. 107(5), 563–579 (2000).
  • Watson JB, Szijan I, Coulter PM 2nd. Localization of RC3 (neurogranin) in rat brain subcellular fractions. Brain Res. Mol. Brain Res. 27(2), 323–328 (1994).
  • Reddy PH, Mani G, Park BS et al. Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J. Alzheimers Dis. 7(2), 103–117; discussion 173–180 (2005).
  • Thorsell A, Bjerke M, Gobom J et al. Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res. 1362, 13–22 (2010).
  • Knobloch M, Mansuy IM. Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Mol. Neurobiol. 37(1), 73–82 (2008).
  • Pienaar IS, Burn D, Morris C, Dexter D. Synaptic protein alterations in Parkinson’s disease. Mol. Neurobiol. 45(1), 126–143 (2012).
  • Picconi B, Piccoli G, Calabresi P. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol. 970, 553–572 (2012).
  • Terry RD, Masliah E, Salmon DP et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30(4), 572–580 (1991).
  • Caudle WM, Bammler TK, Lin Y, Pan S, Zhang J. Using ‘omics’ to define pathogenesis and biomarkers of Parkinson’s disease. Expert Rev. Neurother. 10(6), 925–942 (2010).
  • Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 61(3), 186–218 (2013).
  • Dagley LF, Emili A, Purcell AW. Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis. Proteomics Clin. Appl. 7(1–2), 91–108 (2013).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.