1,115
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Recent advancements of flow cytometry: new applications in hematology and oncology

, &

References

  • Fulwyler MJ. Electronic separation of biological cells by volume. Science 150(3698), 910–911 (1965).
  • Ho LL, Sinha A, Verzi M, Bernt KM, Armstrong SA, Shivdasani RA. DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol. Cell Biol. 33(9), 1735–1745 (2013).
  • Kalina T, Flores-Montero J, van der Velden VH et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 26(9), 1986–2010 (2012).
  • Duque RE, Andreeff M, Braylan RC, Diamond LW, Peiper SC. Consensus review of the clinical utility of DNA flow cytometry in neoplastic hematopathology. Cytometry 14(5), 492–496 (1993).
  • Peters JM, Ansari MQ. Multiparameter flow cytometry in the diagnosis and management of acute leukemia. Arch. Pathol. Lab Med. 135(1), 44–54 (2011).
  • Paietta E, Goloubeva O, Neuberg D et al. A surrogate marker profile for PML/RAR alpha expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin. Cytom. 59(1), 1–9 (2004).
  • Khoury H, Dalal BI, Nevill TJ et al. Acute myelogenous leukemia with t(8;21)-identification of a specific immunophenotype. Leuk. Lymphoma 44(10), 1713–1718 (2003).
  • Falini B, Mecucci C, Tiacci E et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352(3), 254–266 (2005).
  • Haferlach C, Mecucci C, Schnittger S et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 114(14), 3024–3032 (2009).
  • Coustan-Smith E, Mullighan CG, Onciu M et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 10(2), 147–156 (2009).
  • Vitale A, Guarini A, Ariola C et al. Adult T-cell acute lymphoblastic leukemia: biologic profile at presentation and correlation with response to induction treatment in patients enrolled in the GIMEMA LAL 0496 protocol. Blood 107(2), 473–479 (2006).
  • Uckun FM, Gaynon PS, Sensel MG et al. Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: a Children’s Cancer Group study. J. Clin. Oncol. 15(6), 2214–2221 (1997).
  • Niehues T, Kapaun P, Harms DO et al. A classification based on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcome in the COALL studies. Leukemia 13(4), 614–617 (1999).
  • Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin. Chem. 46(8 Pt 2), 1221–1229 (2000).
  • Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am. J. Clin. Pathol. 121(4), 482–488 (2004).
  • Kussick SJ, Fromm JR, Rossini A et al. Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. Am. J. Clin. Pathol. 124(2), 170–181 (2005).
  • Malcovati L, Della Porta MG, Lunghi M et al. Flow cytometry evaluation of erythroid and myeloid dysplasia in patients with myelodysplastic syndrome. Leukemia 19(5), 776–783 (2005).
  • Hamblin TJ. Searching for surrogates for IGHV mutations in chronic lymphocytic leukemia. Leuk. Res. 35(11), 1432–1435 (2011).
  • Crespo M, Bosch F, Villamor N et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N. Engl. J. Med. 348(18), 1764–1775 (2003).
  • Wilcox RA. Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 86(11), 928–948 (2011).
  • Pettitt AR, Jackson R, Carruthers S et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J. Clin. Oncol. 30(14), 1647–1655 (2012).
  • Irish JM, Hovland R, Krutzik PO et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118(2), 217–228 (2004).
  • Irish JM, Anensen N, Hovland R et al. Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood 109(6), 2589–2596 (2007).
  • Irish JM, Czerwinski DK, Nolan GP, Levy R. Kinetics of B cell receptor signaling in human B cell subsets mapped by phospho-specific flow cytometry. J. Immunol. 177(3), 1581–1589 (2006).
  • Campana D. Minimal residual disease in acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 2010, 7–12 (2010).
  • Ravandi F, Jorgensen JL. Monitoring minimal residual disease in acute myeloid leukemia: ready for prime time? J. Natl Compr. Canc. Netw. 10(8), 1029–1036 (2012).
  • Lodewyck T, Cornelissen JJ. Allogeneic stem cell transplantation in acute myeloid leukemia: a risk-adapted approach. Blood Rev. 22(6), 293–302 (2008).
  • Buccisano F, Maurillo L, Del Principe MI et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 119(2), 332–341 (2012).
  • Kern W, Bacher U, Haferlach C, Schnittger S, Haferlach T. The role of multiparameter flow cytometry for disease monitoring in AML. Best Pract. Res. Clin. Haematol. 23(3), 379–390 (2010).
  • Grimwade D, Vyas P, Freeman S. Assessment of minimal residual disease in acute myeloid leukemia. Curr. Opin. Oncol. 22(6), 656–663 (2010).
  • Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol. Oncol. Clin. North Am. 23(5), 1083–1098, vii (2009).
  • Coustan-Smith E, Sandlund JT, Perkins SL et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children’s oncology group. J. Clin. Oncol. 27(21), 3533–3539 (2009).
  • Borowitz MJ, Devidas M, Hunger SP et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 111(12), 5477–5485 (2008).
  • Baer MR, Stewart CC, Dodge RK et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 97(11), 3574–3580 (2001).
  • Arnoulet C, Bene MC, Durrieu F et al. Four- and five-color flow cytometry analysis of leukocyte differentiation pathways in normal bone marrow: a reference document based on a systematic approach by the GTLLF and GEIL. Cytometry B Clin. Cytom. 78(1), 4–10 (2010).
  • Rawstron AC, Child JA, de Tute RM et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the medical research council myeloma IX study. J. Clin. Oncol. 31(20), 2540–2547 (2013).
  • Bottcher S, Ritgen M, Fischer K et al. Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: a multivariate analysis from the randomized GCLLSG CLL8 trial. J. Clin. Oncol. 30(9), 980–988 (2012).
  • Rawstron AC, Villamor N, Ritgen M et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 21(5), 956–964 (2007).
  • Campana D. Molecular determinants of treatment response in acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 366–373 (2008).
  • Coustan-Smith E, Ribeiro RC, Stow P et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 108(1), 97–102 (2006).
  • Holowiecki J, Krawczyk-Kulis M, Giebel S et al. Status of minimal residual disease after induction predicts outcome in both standard and high-risk Ph-negative adult acute lymphoblastic leukaemia. The Polish Adult Leukemia Group ALL 4-2002 MRD Study. Br. J. Haematol. 142(2), 227–237 (2008).
  • Elorza I, Palacio C, Dapena JL, Gallur L, Sanchez de Toledo J, Diaz de Heredia C. Relationship between minimal residual disease measured by multiparametric flow cytometry prior to allogeneic hematopoietic stem cell transplantation and outcome in children with acute lymphoblastic leukemia. Haematologica 95(6), 936–941 (2010).
  • Sanchez J, Serrano J, Gomez P et al. Clinical value of immunological monitoring of minimal residual disease in acute lymphoblastic leukaemia after allogeneic transplantation. Br. J. Haematol. 116(3), 686–694 (2002).
  • Sanchez-Garcia J, Serrano J, Serrano-Lopez J et al. Quantification of minimal residual disease levels by flow cytometry at time of transplant predicts outcome after myeloablative allogeneic transplantation in ALL. Bone Marrow Transplant. 48(3), 396–402 (2013).
  • Venditti A, Buccisano F, Del Poeta G et al. Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood 96(12), 3948–3952 (2000).
  • Venditti A, Maurillo L, Buccisano F et al. Pretransplant minimal residual disease level predicts clinical outcome in patients with acute myeloid leukemia receiving high-dose chemotherapy and autologous stem cell transplantation. Leukemia 17(11), 2178–2182 (2003).
  • Buccisano F, Maurillo L, Gattei V et al. The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia 20(10), 1783–1789 (2006).
  • Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 104(10), 3078–3085 (2004).
  • Walter RB, Gooley TA, Wood BL et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 29(9), 1190–1197 (2011).
  • Rubnitz JE, Inaba H, Dahl G et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 11(6), 543–552 (2010).
  • Rubnitz JE, Crews KR, Pounds S et al. Combination of cladribine and cytarabine is effective for childhood acute myeloid leukemia: results of the St Jude AML97 trial. Leukemia 23(8), 1410–1416 (2009).
  • Lange BJ, Smith FO, Feusner J et al. Outcomes in CCG-2961, a children’s oncology group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the children’s oncology group. Blood 111(3), 1044–1053 (2008).
  • Becton D, Dahl GV, Ravindranath Y et al. Randomized use of cyclosporin A (CsA) to modulate P-glycoprotein in children with AML in remission: Pediatric Oncology Group Study 9421. Blood 107(4), 1315–1324 (2006).
  • Coustan-Smith E, Campana D. Should evaluation for minimal residual disease be routine in acute myeloid leukemia? Curr. Opin. Hematol. 20(2), 86–92 (2013).
  • Bottcher S, Ritgen M, Kneba M. Flow cytometric MRD detection in selected mature B-cell malignancies. Methods Mol. Biol. 971, 149–174 (2013).
  • Tuchin VV, Tarnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A 79(10), 737–745 (2011).
  • Tkaczyk ER, Tkaczyk AH. Multiphoton flow cytometry strategies and applications. Cytometry A 79(10), 775–788 (2011).
  • Benaron DA. The future of cancer imaging. Cancer Metastasis Rev. 21(1), 45–78 (2002).
  • He W, Wang H, Hartmann LC, Cheng JX, Low PS. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl Acad. Sci. USA 104(28), 11760–11765 (2007).
  • Galanzha EI, Shashkov EV, Kelly T, Kim JW, Yang L, Zharov VP. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat. Nanotechnol. 4(12), 855–860 (2009).
  • Galanzha EI, Kokoska MS, Shashkov EV, Kim JW, Tuchin VV, Zharov VP. In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles. J. Biophotonics 2(8–9), 528–539 (2009).
  • Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res. 69(20), 7926–7934 (2009).
  • Nedosekin DA, Sarimollaoglu M, Ye JH, Galanzha EI, Zharov VP. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers. Cytometry A 79(10), 825–833 (2011).
  • Chang YC, Ye JY, Thomas TP et al. Fiber-optic multiphoton flow cytometry in whole blood and in vivo. J. Biomed. Opt. 15(4), 047004 (2010).
  • Galanzha EI, Sarimollaoglu M, Nedosekin DA, Keyrouz SG, Mehta JL, Zharov VP. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts. Cytometry A 79(10), 814–824 (2011).
  • Galanzha EI, Shashkov E, Sarimollaoglu M et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS ONE 7(9), e45557 (2012).
  • Galanzha EI, Zharov VP. Photoacoustic flow cytometry. Methods 57(3), 280–296 (2012).
  • Nedosekin DA, Juratli MA, Sarimollaoglu M et al. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. J. Biophotonics 6(6–7), 523–533 (2013).
  • Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 33(7), 323–332 (2012).
  • Bandura DR, Baranov VI, Ornatsky OI et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81(16), 6813–6822 (2009).
  • Chattopadhyay PK. Quantum dot technology in flow cytometry. Methods Cell Biol. 102, 463–477 (2011).
  • Majonis D, Herrera I, Ornatsky O et al. Synthesis of a functional metal-chelating polymer and steps toward quantitative mass cytometry bioassays. Anal. Chem. 82(21), 8961–8969 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.