1,172
Views
79
CrossRef citations to date
0
Altmetric
Review

Recent developments in multiplexing techniques for immunohistochemistry

, , , , &

References

  • Ramos-Vara JA. Technical aspects of immunohistochemistry. Vet Pathol 2005;42(4):405-26
  • Matos LLd, Trufelli DC, de Matos MG, da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 2010;5:9-20
  • Wick MR. Histochemistry as a tool in morphological analysis: a historical review. Ann Diagn Pathol 2012;16(1):71-8
  • Schubert W, Bonnekoh B, Pommer A, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 2006;24(10):1270-8
  • Yanagita E, Imagawa N, Ohbayashi C, Itoh T. Rapid multiplex immunohistochemistry using the 4-antibody cocktail YANA-4 in differentiating primary adenocarcinoma from squamous cell carcinoma of the lung. Appl Immunohistochem Mol Morphol 2011;19(6):509-13
  • Taylor CR, Shi S-R, Barr NJ. Chapter 1 - Techniques of Immunohistochemistry: Principles, Pitfalls, and Standardization. In: Dabbs DJ, editor. Diagnostic Immunohistochemistry. 3rd edition. Saunders; WB., Philadelphia: 2011. p. 1-41
  • Robertson D, Savage K, Filho J, Isacke C. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol 2008;9(1):13
  • Glass G, Papin J, Mandell J. Simple: A Sequential Immunoperoxidase labeling and erasing method. J Histochem Cytochem 2009;57(10):899-905
  • Sesack S, Miner L, Omelchenko N. Preembedding immunoelectron microscopy: applications for studies of the nervous system. In: Zaborszky L, Wouterlood F, Lanciego J, editor. Neuroanatomical tract-tracing 3. Springer Science+Business Media, Inc, Boston, MA; 2006. p. 6-71
  • Mayhew T. Quantitative immunoelectron microscopy. In: Electron microscopy. Kuo J, editor. Humana Press, Totowa, NJ; 2007. p. 309-29
  • Zagon IS, Ruth TB, Leure-duPree AE, et al. Immunoelectron microscopic localization of the opioid growth factor receptor (OGFr) and OGF in the cornea. Brain Res 2003;967(1–2):37-47
  • McCormack E, Mujić M, Osdal T, et al. Multiplexed mAbs: a new strategy in preclinical time-domain imaging of acute myeloid leukemia. Blood 2013;121(7):e34-42
  • Burke E, Grobler M, Elderfield K, et al. Double-labelling immunohistochemistry for MGMT and a "cocktail" of non-tumourous elements is a reliable, quick and easy technique for inferring methylation status in glioblastomas and other primary brain tumours. Acta Neuropathol Commun 2013;1(1):1-10
  • Traicoff JL, Baibakov G, Biesecker G, et al. Novel application of layered expression scanning for proteomic profiling of plucked hair follicles. Dermatology 2005;210(4):273-8
  • Gannot G, Tangrea MA, Gillespie JW, et al. Layered peptide arrays: high-throughput antibody screening of clinical samples. J Mol Diagn 2005;7(4):427-36
  • Chung J-Y, Braunschweig T, Baibakov G, et al. Transfer and multiplex immunoblotting of a paraffin embedded tissue. Proteomics 2006;6(3):767-74
  • Gannot G, Tangrea MA, Richardson AM, et al. Layered expression scanning: Multiplex molecular analysis of diverse life science platforms. Clin Chim Acta 2007;376(1–2):9-16
  • Gannot G, Tangrea M, Erickson H, et al. Layered peptide array for multiplex immunohistochemistry. J Mol Diagn 2007;9(3):297-304
  • Cornett DS, Reyzer ML, Chaurand P, Caprioli RM. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Meth 2007;4(10):828-33
  • Castellino S. MALDI imaging MS analysis of drug distribution in tissue: the right time!(?). Bioanalysis 2012;4(21):2549-51
  • Huber K, Feuchtinger A, Borgmann DM, et al. Novel approach of MALDI drug imaging, immunohistochemistry, and digital image analysis for drug distribution studies in tissues. Anal Chem 2014;86(21):10568-75
  • Stauber J, Ayed M, Wisztorski M, et al. Specific MALDI-MSI: TAG-MASS. In: Rubakhin SS, Sweedler JV, editors. Mass Spectrometry Imaging. Humana Press, New York; 2010. p. 339-61
  • Thiery G, Shchepinov M, Southern E, et al. Multiplex target protein imaging in tissue sections by mass spectrometry–TAMSIM. Rapid Commun Mass Spectrom 2007;21(6):823-9
  • Becker JS, Zoriy M, Matusch A, et al. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 2010;29(1):156-75
  • Becker JS, Dobrowolska J, Zoriy M, Matusch A. Imaging of uranium on rat brain sections using laser ablation inductively coupled plasma mass spectrometry: a new tool for the study of critical substructures affined to heavy metals in tissues. Rapid Commun Mass Spectrom 2008;22(18):2768-72
  • M-M P, Weiskirchen R, Gassler N, et al. Novel bioimaging techniques of metals by laser ablation inductively coupled plasma mass spectrometry for diagnosis of fibrotic and cirrhotic liver disorders. PLoS One 2013;8(3):e58702
  • Seuma J, Bunch J, Cox A, et al. Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics 2008;8(18):3775-84
  • Giesen C, Wang HAO, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Meth 2014;11(4):417-22
  • Gulmann C, O’Grady A. Tissue microarrays: an overview. Curr Diagn Pathol 2003;9(3):149-54
  • Sauter G, Simon R, Hillan K. Tissue microarrays in drug discovery. Nat Rev Drug Discov 2003;2(12):962-72
  • Hassan S, Ferrario C, Mamo A, Basik M. Tissue microarrays: emerging standard for biomarker validation. Curr Opin Biotechnol 2008;19(1):19-25
  • Quagliata L, Schlageter M, Quintavalle C, et al. Identification of New Players in Hepatocarcinogenesis: Limits and Opportunities of Using Tissue Microarray (TMA). Microarrays 2014;3(2):91-102
  • Battifora H. The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. (0023-6837 (Print))
  • Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998;4(7):844-7
  • Hoos A, Cordon-Cardo C. Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest 2001;81(10):1331-8
  • Kampf C, Olsson I, Ryberg U, et al. Production of tissue microarrays, immunohistochemistry staining and digitalization within the human protein atlas. J Vis Exp 2012(63):3620
  • Giltnane JM, Rimm DL. Technology insight: identification of biomarkers with tissue microarray technology. Nat Clin Prac Oncol 2004;1(2):104-11
  • Skacel M, Skilton B Fau - Pettay JD, Pettay Jd Fau - Tubbs RR, Tubbs RR. Tissue microarrays: a powerful tool for high-throughput analysis of clinical specimens: a review of the method with validation data. (1541-2016 (Print))
  • Hoos A, Urist MJ, Stojadinovic A, et al. Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 2001;158(4):1245-51
  • Chen W, Foran DJ. Advances in cancer tissue microarray technology: Towards improved understanding and diagnostics. Anal Chim Acta 2006;564(1):74-81
  • Blake AJ, Pearce TM, Rao NS, et al. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. Lab Chip 2007;7(7):842-9
  • Sivagnanam V, Gijs M. Exploring living multicellular organisms, organs, and tissues using microfluidic systems. Chem Rev 2013;113(5):3214-47
  • Mark D, Haeberle S, Roth G, et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 2010;39(3):1153-82
  • Bernard A, Michel B, Delamarche E. Micromosaic immunoassays. Anal Chem 2001;73(1):8-12
  • Ciftlik AT, Lehr H-A, Gijs MAM. Microfluidic processor allows rapid HER2 immunohistochemistry of breast carcinomas and significantly reduces ambiguous (2+) read-outs. Proc Natl Acad Sci USA 2013;110(14):5363-8
  • Kim M, Kim T, Kong S-Y, et al. Breast cancer diagnosis using a microfluidic multiplexed immunohistochemistry platform. PLoS One 2010;5(5):e10441
  • Kim M, Kwon S, Kim T, et al. Quantitative proteomic profiling of breast cancers using a multiplexed microfluidic platform for immunohistochemistry and immunocytochemistry. Biomaterials 2011;32(5):1396-403
  • Kwon S, Kim MS, Lee ES, Park J-K. Quantitative and multiplexed immunocytochemistry using a microfluidic quantum dot immuno-staining system. In: 15th International Conference on miniaturized systems for chemistry and life sciences. Seattle, WA, USA; 2011. 1926-8
  • Kwon S, Lee E, Park J-K. Accurate quantification of multiple biomarkers using microfluidic determination of tumor-specific antigenic sites in cancer tissues. In: Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013 Transducers & Eurosensors XXVII: The 17th International Conference. IEEE, 2013. 1243-6
  • Lovchik RD, Kaigala GV, Georgiadis M, Delamarche E. Micro-immunohistochemistry using a microfluidic probe. Lab Chip 2012;12(6):1040-3
  • Furuya T, Ikemoto K, Kawauchi S, et al. A novel technology allowing immunohistochemical staining of a tissue section with 50 different antibodies in a single experiment. J Histochem Cytochem 2004;52(2):205-10
  • Asenjo JA, Andrews BA. Aqueous two-phase systems for protein separation: a perspective. J Chromatogr A 2011;1218(49):8826-35
  • Tavana H, Jovic A, Mosadegh B, et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat Mater 2009;8(9):736-41
  • Tavana H, Mosadegh B, Takayama S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv Mater 2010;22(24):2628-31
  • Tavana H, Takayama S. Aqueous biphasic microprinting approach to tissue engineering. Biomicrofluidics 2011;5(1):013404
  • Frampton J, Shi H, Kao A, et al. Delivery of proteases in aqueous two-phase systems enables direct purification of stem cell colonies from feeder cell co-cultures for differentiation into functional cardiomyocytes. Adv Healthc Mater 2013;2(11):1440-4
  • Fang Y, Frampton JP, Raghavan S, et al. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods 2012;18(9):647-57
  • Frampton J, White J, Simon A, et al. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA. Scientific reports 2014;4:4878
  • Simon A, Frampton J, Huang N-T, et al. Aqueous two-phase systems enable multiplexing of homogeneous immunoassays. Technology 2014;2(2):176-84
  • Frampton JP, Tsuei M, White JB, et al. Aqueous two-phase system-mediated antibody micropatterning enables multiplexed immunostaining of cell monolayers and tissues. Biotechnol J 2015;10(1):121-5
  • Kairdolf BA, Smith AM, Stokes TH, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem (Palo Alto Calif) 2013;6:143-62
  • Bostick RM, Kong KY, Ahearn TU, et al. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf Proc IEEE Eng Med Biol Soc 2006;1:3313-16
  • Jennings TL, Triulzi RC, Tao G, et al. Simplistic attachment and multispectral imaging with semiconductor nanocrystals. Sensors (Basel) 2011;11(11):10557-70
  • Zrazhevskiy P, True LD, Gao X. Multicolor multicycle molecular profiling with quantum dots for single-cell analysis. Nat Protoc 2013;8(10):1852-69
  • Zhang Y, Wang TH. Quantum dot enabled molecular sensing and diagnostics. Theranostics 2012;2(7):631-54
  • Xing Y, Chaudry Q, Shen C, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2007;2(5):1152-65
  • Vannoy CH, Tavares AJ, Noor MO, et al. Biosensing with quantum dots: a microfluidic approach. Sensors (Basel) 2011;11(10):9732-63
  • James FH, Richard DP. Gold cluster labels and related technologies in molecular morphology. In: Hacker GW, Tubbs RR, editors. Molecular morphology in human tissues. CRC Press; 2004. p. 81-100
  • Dinish US, Balasundaram G, Chang YT, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 2014;4:4075
  • Chen Y, Zheng X, Chen G, et al. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomedicine 2012;7:73-82
  • Lu Y, Feng S, Liu X, Chen L. Surface-enhanced Raman scattering study of silver nanoparticles prepared by using MC as a template. J Nanomater 2013;2013:8
  • Wang G, Achim CL, Hamilton RL, et al. Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods (San Diego, Calif.) 1999;18(4):459-64
  • Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods 2014;70(1):46-58
  • Gusev Y, Sparkowski J, Raghunathan A, et al. Rolling circle amplification : a new approach to increase sensitivity for immunohistochemistry and flow cytometry. Am J Pathol 2001;159(1):63-9
  • Schweitzer B, Wiltshire S, Lambert J, et al. Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci USA 2000;97(18):10113-19
  • Janssen K, Knez K, Spasic D, Lammertyn J. Nucleic Acids for Ultra-Sensitive Protein Detection. Sensors 2013;13(1):1353-84
  • Huang W, Hennrick K, Drew S. A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays. Hum Pathol 2013;44(1):29-38
  • Nederlof M, Watanabe S, Burnip B, et al. High-throughput profiling of tissue and tissue model microarrays: Combined transmitted light and 3-color fluorescence digital pathology. J Pathol Inform 2011;2:50
  • Moles Lopez X, D’Andrea E, Barbot P, et al. An automated blur detection method for histological whole slide imaging. (1932-6203 (Electronic))
  • Zheng PP, van der Weiden M Fau - Kros JM, Kros JM. Fast tracking of co-localization of multiple markers by using the nanozoomer slide scanner and NDPViewer. (1097-4652 (Electronic))
  • Rojo MG, Bueno G Fau - Slodkowska J, Slodkowska J. Review of imaging solutions for integrated quantitative immunohistochemistry in the Pathology daily practice. (1897-5631 (Electronic)).
  • Mansfield JR, Hoyt C, Levenson RM. Visualization of microscopy-based spectral imaging data from multi-label tissue sections. In: Current Protocols in Molecular Biology. John Wiley & Sons, Inc; 2001):14.19.1-15
  • O’Hurley G, Sjöstedt E, Rahman A, et al. Garbage in, garbage out: A critical evaluation of strategies used for validation of immunohistochemical biomarkers. Mol Oncol 2014;8(4):783-98
  • Walker RA. Quantification of immunohistochemistry–issues concerning methods, utility and semiquantitative assessment I. Histopathology 2006;49(4):406-10
  • Murphy RF. Putting proteins on the map. Nat Biotech 2006;24(10):1223-4
  • Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotech 2003;21(1):41-6
  • Oliver C. Use of immunogold with silver enhancement. In: Javois L, editor. Immunocytochemical Methods and Protocols. Humana Press, Totowa, NJ; 1999. p. 241-5
  • Vosse BAH, Seelentag W, Bachmann A, et al. Background staining of visualization systems in immunohistochemistry: Comparison of the avidin-biotin complex system and the envision + system. Appl Immunohistochem Mol Morphol 2007;15(1):103-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.