319
Views
17
CrossRef citations to date
0
Altmetric
Review

Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics

, , , , , & show all

References

  • Silva SN, Gil OM, Oliveira VC, et al. Association of polymorphisms in ERCC2 gene with non-familiar thyroid cancer risk. Cancer Epidemiol Biomarkers Prev 2005;14:2407-12
  • Hung RJ, Hall J, Brennan P, et al. Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 2005;162:925-42
  • Kavvoura FK, Ioannidis JP. CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes miellitus: a HuGE review and meta-analysis. Am J Epidemiol 2005;162:3-16
  • Szolnoki Z, Melegh B. Gene-gene and gene-environment interplay represent specific susceptibility for different types of ischaemic stroke and leukoaraiosis. Curr Med Chem 2006;13:1627-34
  • Yong WP, Innocenti F, Ratain MJ. The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol 2006;62:35-46
  • Feero WG, Guttmacher AE. Genomics and drug response. N Engl J Med 2011;364:1144-53
  • Leroy Q, Raoult D. Review of microarray studies for host–intracellular pathogen interactions. J Microbiol Met 2010;81:81-95
  • Baptista PV, Koziol-Montewka M, Paluch-Oles J, et al. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium Tuberculosis DNA in clinical samples. Clin Chem 2006;52:1433-4
  • Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev 2012;41:2606-22
  • Thaxton C, Georganopoulou D, Mirkin C. Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 2006;363:120-6
  • Baptista P, Doria G, Henriques D, et al. Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 2005;119:111-17
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater 2004;16:1685-706
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005;109:13857-70
  • Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006;22:32-41
  • Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 2003;125:8102-3
  • Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 2004;101:14036-9
  • Lee H, Joo S, Lee S, et al. Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles. Biosens Bioelectron 2010;26:730-5
  • Shawky SM, Bald D, Azzazy HME. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 2010;43:1163-8
  • Kanjanawarut R, Su X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 2009;81:6122-9
  • Liu M, Yuan M, Lou X, et al. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles. Biosens Bioelectron 2011;26:4294-300
  • Zhang J, Wang L, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008;4:1196-200
  • Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996;382:607-9
  • Storhoff JJ, Elghanian R, Mucic RC, et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 1998;120:1959-64
  • Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics - From genomics to proteomics. J Proteomics 2012;75:2811-23
  • Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem 2006;118:96-100
  • Nam JM, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 2004;126:5932-3
  • Thaxton CS, Elghanian R, Thomas AD, et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci USA 2009;106:18437-42
  • Sato K, Hosokawa K, Maeda M. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res 2005;33:e4
  • Costa P, Amaro A, Botelho A, et al. Gold nanoprobes assay for identification of mycobacteria from the Mycobacterium tuberculosis complex. Clin Microbiol Infect 2010;16:1464-9
  • Doria G, Franco R, Baptista P. Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnol 2007;1:53-7
  • Conde J, de la Fuente JM, Baptista PV. RNA quantification using gold nanoprobes - application to cancer diagnostics. J Nanobiotechnology 2010;8:5
  • Pedrosa P, Veigas B, Machado D, et al. Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis. Tuberculosis 2014;94:332-7
  • Acikgoz C, Hempenius MA, Huskens J, et al. Polymers in conventional and alternative lithography for the fabrication of nanostructures. Eur Polym J 2011;47:2033-52
  • Mafuné F, Kohno J, Takeda Y, et al. Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem 2001;105:5114-20
  • Villard C, Al-kattan A. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications. Int J Nanomed 2014;9:5415-30
  • Shahmoon A, Limon O, Girshevitz O, et al. Tunable nano devices fabricated by controlled deposition of gold nanoparticles via focused ion beam. Microelectron Eng 2010;87:1363-6
  • Mühlig S, Rockstuhl C. Multipole Analysis of Self-assembled metamaterials. In: Rockstuhl C, Scharf T, Editors Amorphous Nanophotonics. Springer Berlin; Heidelberg: 2013. 89-117
  • Grzelczak M, Vermant J, Furst EM, et al. Directed self-assembly of nanoparticles. ACS Nano 2010;4:3591-605
  • Kinge S, Crego-calama M, Reinhoudt DN. Self-assembling nanoparticles at surfaces and interfaces. Chem Phys Chem 2008;9:20-42
  • Nuraje N, Mohammed S, Yang L, et al. Biomineralization nanolithography: combination of bottom-up and top-down fabrication to grow arrays of monodisperse gold nanoparticles along peptide lines. Angew Chem Int Ed Engl 2009;48:2546-8
  • Baptista P, Pereira E, Eaton P, et al. Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 2008;391:943-50
  • Richards R, Bönnemann H. Synthetic Approaches to Metallic Nanomaterials. In: Kumar CSSR, Hormes J, Leuschner C, Editors Nanofabrication Towards Biomedical Applications: Tech, Tools, Appl, Impact. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany; 2005:2
  • Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 2007;107:4797-862
  • Bönnemann H, Richards RM. Nanoscopic Metal Particles - Synthetic Methods and Potential Applications. Eur J Inorg Chem 2001;2455-80
  • Veigas B, Fortunato E, Baptista PV. Mobile Based Gold Nanoprobe TB Diagnostics for Point-of-Need. In: Rasooly A, Herold KE, Editors. Mobile Health Technologies. Methods Mol Biol 2015;1256:41-56
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951;11:55-75
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 1973;241:20-2
  • Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 1982;86:3391-5
  • Ji X, Song X, Li J, et al. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 2007;129:13939-48
  • Kumar D, Meenan BJ, Mutreja I, et al. Controlling the size and size distribution of gold nanoparticles: a design of experiment study. Int J Nanosci 2012;11:1250023
  • Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles. J Chem Soc 1994;801-2
  • Ackerson CJ, Jadzinsky PD, Kornberg RD, et al. Thiolate ligands for synthesis of water-soluble gold clusters. J Am Chem Soc 2005;127:6550-1
  • Martin MN, Basham JI, Chando P, et al. Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 2010;26:7410-17
  • Rama S, Perala K, Kumar S. On the mechanism of metal nanoparticle synthesis in the brust − schiffrin method. Langmuir 2013;29:9863-73
  • Deraedt C, Salmon L, Gatard S, et al. Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 2014;50:14194-6
  • Haiss W, Thanh NTK, Aveyard J, et al. Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 2007;79:4215-21
  • Mallick K, Wang ZL, Pal T. Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. J Photochem Photobiol A 2001;140:75-80
  • Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001;17:6782-6
  • Sato K, Onoguchi M, Sato Y, et al. Non-cross-linking gold nanoparticle aggregation for sensitive detection of single-nucleotide polymorphisms: Optimization of the particle diameter. Anal Biochem 2006;350:162-4
  • Wiesner J, Wokaun A. Anisometric gold colloids. Preparation, characterization, and optical properties. Chem Phys Lett 1989;157:569-75
  • Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil Trans R Soc A 2010;373:1333-83
  • Love JC, Estroff LA, Kriebel JK, et al. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem Rev 2005;105:1103-69
  • Alivisatos AP, Johnsson KP, Peng X, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996;382:609-11
  • Hurst SJ, Lytton-Jean AKR, Mirkin CA. Maximizing DNA Loading on a Range of Gold Nanoparticle Sizes. Anal Chem 2006;78:8313-18
  • Zhang X, Servos MR, Liu J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 2012;134:7266-9
  • Storhoff JJ, Elghanian R, Mirkin CA, et al. Sequence-dependent stability of dna-modified gold nanoparticles. Langmuir 2002;18:6666-70
  • Li F, Zhang H, Dever B, et al. Thermal stability of DNA functionalized gold nanoparticles. Bioconjugate Chem 2013;24:1790-7
  • Doria G, Baumgartner BG, Franco R, et al. Optimizing Au-nanoprobes for specific sequence discrimination. Colloid Surface B 2010;77:122-4
  • Demers LM, Mirkin CA, Mucic RC, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 2000;72:5535-41
  • Lytton-Jean AKR, Mirkin CA. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 2005;127:12754-5
  • Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Curr Protoc Hum Geneti 2001;10.1002/0471142905.hg0908s07
  • Bakthavathsalam P, Rajendran VK, Mohammed JAB. A direct detection of Escherichia coli genomic DNA using gold nanoprobes. J Nanobiotechnology 2012;10:8
  • Liandris E, Gazouli M, Andreadou M, et al. Direct detection of unamplified DNA from pathogenic mycobacteria using DNA-derivatized gold nanoparticles. J Microbiol Meth 2009;78:260-4
  • Stakenborg T, Peeters S, Reekmans G, et al. Increasing the stability of DNA-functionalized gold nanoparticles using mercaptoalkanes. J Nanopart Res 2008;10:143-52
  • Duguid JG, Bloomfield VA. Aggregation of melted DNA by divalent metal ion-mediated cross-linking. Biophys J 1995;69:2642-8
  • Sun L, Zhang Z, Wang S, et al. Effect of pH on the interaction of gold nanoparticles with DNA and application in the detection of Human p53 gene mutation. Nanoscale Res Lett 2009;4:216-20
  • Larguinho M, Santos S, Almeida J, et al. DNA adduct identification using gold-aptamer nanoprobes. IET Nanobiotechnol 2014;9(2):95-101
  • Baca JT, Severns V, Lovato D, et al. Rapid detection of Ebola virus with a reagent-free, point-of-care biosensor. Sensors-Basel 2015;15:8605-14
  • Carter JR, Balaraman V, Kucharski CA, et al. A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virol J 2013;10:201-15
  • Baptista PV. Nanodiagnostics: leaving the research lab to enter the clinics? Diagnosis 2014;1:305-9
  • Veigas B, Branquinho R, Pinto JV, et al. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosens Bioelectron 2014;52:50-5
  • Mollasalehi H, Yazdanparast R. Non-crosslinking gold nanoprobes for detection of nucleic acid sequence-based amplification products. Anal Biochem 2012;425:91-5
  • Weber JL, David D, Heil J, et al. Human Diallelic Insertion/Deletion Polymorphisms. Am J Hum Genet 2002;71:854-62
  • Wang Z, Moult J. SNPs, Protein structure, and disease. Hum Mutat 2001;17:263-70
  • Hung RJ, Hall J, Brennan P, et al. Genetic Polymorphisms in the Base Excision Repair Pathway and Cancer Risk: A HuGE Review. Am J Epidemiol 2005;162:925-42
  • Carlos FF, Flores O, Doria G, et al. Characterization of genomic SNP via colorimetric detection using a single gold nanoprobe. Anal Biochem 2014;465:1-5
  • Veigas B, Machado D, Perdigão J, et al. Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis. Nanotechnology 2010;21:415101
  • Veigas B, Fernandes AR, Baptista PV. AuNPs for identification of molecular signatures of resistance. Front Microbiol 2014;5:455
  • Veigas B, Pedrosa P, Couto I, et al. Isothermal DNA amplification coupled to Au-nanoprobes for detection of mutations associated to Rifampicin resistance in Mycobacterium tuberculosis. J Nanobiotechnol 2013;11:38
  • Doria G, Larguinho M, Dias JT, et al. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology 2010;21:255101
  • Conde J, Doria G, de la Fuente JM, et al. RNA quantification using noble metal nanoprobes: simultaneous identification of several different mRNA targets using color multiplexing and application to cancer diagnostics. Methods Mol Biol 2012;906:71-87
  • Chen C, Song G, Yang X, et al. A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie 2010;92:1416-21
  • Yuan Y, Zhang J, Zhang H, et al. Label-free colorimetric immunoassay for the simple and sensitive detection of neurogenin3 using gold nanoparticles. Biosens Bioelectron 2011;26:4245-8
  • Mazumdar D, Liu J, Lu G, et al. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates. Chem Commun 2010;46:1416-18
  • Wu J, Li L, Zhu D, et al. Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Anal Chim Acta 2011;694:115-19
  • Gao ZF, Song WW, Luo HQ, et al. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method. Biosens Bioelectron 2014;65C:360-5
  • Kiechle FL, Holland CA. Point-of-care testing and molecular diagnostics: Miniaturization required. Clin Lab Med 2009;29:555-60
  • Ríos A, Zougagh M, Avila M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal Chim Acta 2012;740:1-11
  • Sato Y, Hosokawa K, Maeda M. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip. Colloid Surface B 2006;62:71-6
  • Bernacka-Wojcik I, Lopes P, Vaz AC, et al. Bio-microfluidic platform for gold nanoprobe based DNA detection—application to mycobacterium tuberculosis. Biosens Bioelectron 2013;48:87-93
  • Veigas B, Jacob JM, Costa MN, et al. Gold on paper–paper platform for Au-nanoprobe TB detection. Lab Chip 2012;12:4802-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.