18
Views
11
CrossRef citations to date
0
Altmetric
Review

Role of molecular studies in the classification of lymphoma

Pages 83-97 | Published online: 09 Jan 2014

References

  • Isaacson PG. The current status of lymphoma classification. BE j liaematol. 109(2), 258–266 (2000).
  • •Insightful overview of lymphoma classification: past and present.
  • Willis RA. The tumours of lymphoid tissue. In: Pathology of Tumors. Mosby, MO, USA, 760 (1948).
  • Hopwood AT Proceedings of the Linnean Society of London. 171,230-234 (1957).
  • Teller E. Conversations on the Dark Secrets of Physics. Plenum Press, NY, USA (1991).
  • Anonymous National Cancer Institute sponsored study of classifications of non-Hodgkin's lymphomas: summary and description of a working formulation for clinical usage. The Non-Hodgkin's Lymphoma Pathologic Classification Project. Cancer 49(10), 2112–2135 (1982).
  • Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization Classification of TUMOIN. Pathology and Genetics of TUMOUTS ofthematopoietic and Lymphoid Tissues. IARC Press, Lyon, France (2001).
  • ••Most recent and current bible oflymphoma classification.
  • Gleissner B, Thiel E. Detection of immunoglobulin heavy chain gene rearrangements in hematologic malignancies. Expert Rev Mal Diagn.1 (2), 191–200 (2001).
  • Wood GS. Analysis of clonality in cutaneous T-cell lymphoma and associated diseases. Ann. NY Acad. Sri. 941,26–30 (2001).
  • Bagg A. Commentary: minimal residual disease: how low do we go? Mal Diagn. 6(3), 155–160 (2001).
  • Carbone A. Emerging pathways in the development of AIDS-related lymphomas. Lancet Oncol 4(1), 22–29 (2003).
  • Greiner T, Armitage JO, Gross TG. Atypical lymphoproliferative diseases. Hematology (4m. Soc. Hematol E,duc. Program) 133–146 (2000).
  • Alizadeh AA, Eisen MB, Davis RE etal Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000).
  • ••First paradigmatic unsupervised studyusing microarray analysis in lymphoma, identifying two histogenic and prognostically relevant subsets.
  • Shipp MA, Ross KN, Tamayo P etal Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Med. 8(1), 68–74 (2002).
  • ••First paradigmatic supervised study usingmicroarray analysis in lymphoma that was able to predict response to therapy.
  • Rosenwald A, Wright G, Chan WC etal The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Eng/. I Med. 346(25), 1937–1947 (2002).
  • •An extension of [12] with further genomic and expression profile correlates.
  • Rosenwald A, Wright G, Leroy K et al Molecular diagnosis of primary mediastinal B-cell lymphoma identifies a clinically favorable subgroup of diffuse large B-cell lymphoma related to Hodgkin lymphoma. J. Bp. Med. 198(6), 851–862 (2003).
  • Aguiar RC, Yakushijin Y, Kharbanda S, Salgia R, Fletcher JA, Shipp MA. BAL is a novel risk-related gene in diffuse large B-cell lymphomas that enhances cellular migration. B/ooc/ 96(13), 4328–4334 (2002).
  • Nanjangud G, Rao PH, Hegde A eta]. Spectral karyotyping identifies new rearrangements, translocations and clinical associations in diffuse large B-cell lymphoma. B/ooc/ 99 (7), 2554–2561 (2002).
  • Chaganti RS, Nanjangud G, Schmidt H, Teruya-Feldstein J. Recurring chromosomal abnormalities in non-Hodgkin's lymphoma: biologic and clinical significance. Semin. Hematol 37(4), 396–411 (2000).
  • Offit K, Wong G, Filippa DA, Tao Y, Chaganti RS. Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin's lymphoma: clinical correlations. B/ooc/77(7), 1508–1515 (1991).
  • Dyomin VG, Palanisamy N, Lloyd KO et alMUC1 is activated in a B-cell lymphoma by the t (1;14) (q21;q32) translocation and is rearranged and amplified in B-cell lymphoma subsets. B/ooc/95(8), 2666–2671 (2000).
  • Gilles F, Goy A, Remache Y, Shue P, Zelenetz AD. MUC1 dysregulation as the consequence of a t (1;14) (q21;q32) translocation in an extranodal lymphoma. B/ooc/95(9), 2930–2936 (2000).
  • Lossos IS, Alizadeh AA, Rajapaksa R, Tibshirani R, Levy R. HGAL is a novel interleukin-4-inducible gene that strongly predicts survival in diffuse large B-cell lymphoma. Blood 101(2), 433–440 (2003).
  • Albagli-Curiel O. Ambivalent role of BGL6 in cell survival and transformation. Oncogene 22 (4), 507–516 (2003) .
  • Lossos IS, Jones CD, Wamke R etal Expression of a single gene, BCL-6, strongly predicts survival in patients with diffuse large B-cell lymphoma. Blooc198(4), 945–951 (2001).
  • Akasaka T, Ueda C, Kurata M et a/. Nonimmunoglobulin (non-V/BGL6gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BGL6. Blooc196(8), 2907–2909 (2000).
  • Pasqualucci L, Migliazza A, Ye BH, Dalla-Favera R. Transcriptional deregulation of mutated BCL6 alleles by loss of negative autoregulation in diffuse large B-cell lymphoma. Ann. NY Acad. Sri. 987,314-315 (2003).
  • •Details the mutational events dysregulating BCL-6 in the genetic pathogenesis of diffuse large B-cell lymphoma.
  • Pasqualucci L, Neumeister P, Goossens T et al Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412 (6844), 341–346 (2001).
  • Dyer MJ, Oscier DG. The configuration of the immunoglobulin genes in B-cell chronic lymphocytic leukemia. Leukemia 16(6), 973–984 (2002).
  • •Good review of the role of /glisomatic hyperrnutation in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL).
  • Jelinek DF, Tschumper RC, Geyer SM et al Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. Br. Haematol 115(4), 854–861 (2001).
  • Rosenwald A, Alizadeh AA, Widhopf G et al Relation of gene expression phenotype to immunoglobulin mutation genotype in B-cell chronic lymphocytic leukemia. Exp. Med. 194(11), 1639–1647 (2001).
  • Klein U, Tu Y, Stolovitzky GA etal Gene expression profiling of B-cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B-cells. I Exp. Med. 194(11), 1625–1638 (2001).
  • ••This and [30] are microarray studies whichled to the recognition that both forms of CLL/SLL are closely related, have a profile of memory B-cells and the former identified the discriminating role of ZAP-70 expression.
  • McCarthy H, Wierda WG, Barron LL etal High expression of activation-induced cytidine deaminase (MD) and splice variants is a distinctive feature of poor prognosis chronic lymphocytic leukemia. Blood101 (12), 4903–4908 (2003).
  • Tobin G, Thunberg U, Johnson A etal Somatically mutated Ig W-P3-21genes characterize a new subset of chronic lymphocytic leukemia. B/ooc/99(6), 2262–2264 (2002).
  • Wiestner A, Rosenwald A, Barry TS etal ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome and distinct gene expression profile. Blood101(12), 4944–4951 (2003).
  • Dohner H, Stilgenbauer S, Benner A eta]. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl. Med. 343(26), 1910–1916 (2000).
  • Stilgenbauer S, Bullinger L, Lichter P, Dohner H. Genetics of chronic lymphocytic leukemia: genomic aberrations and V(H) gene mutation status in pathogenesis and clinical course. Leukemia 16(6), 993–1007 (2002).
  • •Comprehensive review of genetic abnormalities in CLL/SLL.
  • Calm GA, Dumitru CD, Shimizu M eta]. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99(24), 15524–15529 (2002).
  • Yabumoto K, Akasaka T, Muramatsu M et al Rearrangement of the 5 cluster region of the BCL2gene in lymphoid neoplasm: a summary of nine cases. Leukemia 10(6), 970–977 (1996).
  • Gaidano G, Newcomb EW, Gong JZ et al Analysis of alterations of oncogenes and tumor suppressor genes in chronic lymphocytic leukemia. Am. J. Athol 144(6), 1312–1319 (1994).
  • Schimmer AD, Munk-Pedersen I, Minden MD, Reed JC. Bc1-2 and apoptosis in chronic lymphocytic leukemia. CI.117: 7i-eat. Options Oncol 4(3), 211–218 (2003).
  • Aster JC, Longtine JA. Detection of BCL2 rearrangements in follicular lymphoma. Am. Pathol 160(3), 759–763 (2002).
  • •Impressive summary of the state of the art in molecular diagnosis of follicular lymphoma (FL).
  • Gribben JG. Monitoring disease in lymphoma and CLL patients using molecular techniques. Best Pract. Res. din. Haematol 15(1), 179–195 (2002).
  • Bagg A, Braziel RM, Arber DA, Bijwaard KE, Chu AY. Immunoglobulin heavy chain gene analysis in lymphomas: a multi-center study demonstrating the heterogeneity of performance of polymerase chain reaction assays. Mal Diagn. 4(2), 81–89 (2002).
  • Lopez-Guillermo A, Cabanillas F, McDonnell TI etal Correlation of bc1-2 rearrangement with clinical characteristics and outcome in indolent follicular lymphoma. B/ooc/93(9), 3081–3087 (1999).
  • Albinger-Hegyi A, Hochreutener B, Abdou MT etal High frequency of t(14;18) translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am. J. Athol 160(3), 823–832 (2002).
  • Biagi JJ, Seymour JE Insights into the molecular pathogenesis of follicular lymphoma arising from analysis of geographic variation. Blood 99 (12), 4265–4275 (2002).
  • •Comprehensive and interesting review of the apparent ethnic differences in the molecular etiology of FL.
  • Horsman DE, Okamoto I, Ludkovski 0 etal Follicular lymphoma lacking the t (14;18) (q32;q21): identification of two disease subtypes. BE J. Haematol 120(3), 424–433 (2003).
  • Bosga-Bouwer AG, van Imhoff GW, Boonstra R eta]. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood 101 (3), 1149–1154 (2003).
  • Storz MN, Van De Rijn M, Kim YH, Mraz-Gernhard S, Hoppe RT, Kohler S. Gene expression profiles of cutaneous B-cell lymphoma. .1. Invest. Dermatol 120(5), 865–870 (2003).
  • Mintzer D, Bagg A. Clinical syndromes of transformation in clonal hematologic disorders. Am. Med. 111 (6), 480–488 (2001).
  • Martinez-Climent JA, Alizadeh AA, Segraves R etal Transformation of follicular lymphoma to diffuse large cell lymphoma is associated with a heterogeneous set of DNA copy number and gene expression alterations. Blood 101(8), 3109–3117 (2003).
  • Lossos IS, Alizadeh AA, Diehn M etal Transformation of follicular lymphoma to diffuse large-cell lymphoma: alternative patterns with increased or decreased expression of c-myc and its regulated genes. Proc. Natl Acad. Sc]. USA 99(13), 8886–8891 (2002).
  • Elenitoba-Johnson KS, Jenson SD, Abbott RT etal Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Proc. Natl Acad. Sc]. USA 100(12), 7259–7264 (2003).
  • ••Insightful analysis of paired FL and theirtransformed components, with in vitro and in vivo documentation of the role of targeted therapy.
  • Akasaka T, Lossos IS, Levy R. BCL6gene translocation in follicular lymphoma: a harbinger of eventual transformation to diffuse aggressive lymphoma. B/ooc/102 (4), 1443–1448 (2003).
  • Belaud-Rotureau MA, Parrens M, Dubus P, Garroste JC, de Mascarel A, Merlio JR A comparative analysis of FISH, RT-PCR, PCR and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod. Pathol 15(5), 517–525 (2002).
  • Thomazy VA, Luthra R, Uthman MO, Davies PJ, Medeiros U. Determination of cyclin D1 and CD20 mRNA levels by real-time quantitative RT-PCR from archival tissue sections of mantle cell lymphoma and other non-Hodgkin's lymphomas. I Mal Diagn. 4(4), 201–208 (2002).
  • Rosenwald A, Wright G, Wiestner A eta]. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Ce113(2), 185–197 (2003).
  • ••Yet another in the series of key studiesemanating from the Lymphoma/Leukemia Molecular Profiling Project.
  • Roue G, Krieger S, Florent M etal. Expression of the two alternative [Al and 03] transcripts of CCND1 gene in cyclin Dl-expressing B-malignancies: relevance for the pathogenesis. Leukemia 17(3), 652–655 (2003).
  • Dreyling MH, Bullinger L, Ott G et al Alterations of the cyclin D1/p16-pRB pathway in mantle cell lymphoma. Cancer Res. 57(20), 4608–4614 (1997).
  • Pinyol M, Hernandez L, Cazorla M eta]. Deletions and loss of expression of pl6INK4a and p21Wafl genes are associated with aggressive variants of mantle cell lymphomas. B1ooc/89(1), 272–280 (1997).
  • Quintanilla-Martinez L, Davies-Hill T, Fend F etal Sequestration of p27Kipl protein by cyclin D1 in typical and blastic variants of mantle cell lymphoma (MCL): implications for pathogenesis. Blood 101(8), 3181–3187 (2003).
  • Fang NY, Greiner TC, Weisenburger DD eta]. Oligonucleotide microarrays demonstrate the highest frequency of ATM mutations in the mantle cell subtype of lymphoma. Proc. Natl Acad. Sc]. USA 100(9), 5372–5377 (2003).
  • Nagy B, Lundan T, Larramendy ML eta]. Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma. BE I-Lematol 120(3), 434–441 (2003).
  • Walsh SH, Thorselius M, Johnson A etal Mutated VH genes and preferential VH3-21 use define new subsets of mantle cell lymphoma. B/ooc/101(10), 4047–4054 (2003).
  • Kienle D, Krober A, Katzenberger T etal VH mutation status and VDJ rearrangement structure in mantle cell lymphoma: correlation with genomic aberrations, clinical characteristics and outcome. B/ooc/102(8), 3003–3009 (2003).
  • Orchard J, Garand R, Davis Z etal A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, non-nodal disease. Blood 101(12), 4975–4981 (2003).
  • Camacho PT, Algara P, Rodriguez A etal Molecular heterogeneity in MCL defined by the use of specific VH genes and the frequency of somatic mutations. Blood 101(10), 4042–4046 (2003).
  • Maes B, De Wolf-Peeters C. Marginal zone cell lymphoma: an update on recent advances. Hstopathology 40(2), 117–126 (2002).
  • •Comprehensive and up-to-date review of the genetics of marginal zone lymphoma.
  • Dogan A, Isaacson PG. Splenic marginal zone lymphoma. Semin. Diagn. Pathol 20(2), 121–127 (2003).
  • Gruszka-Westwood AM, Hamoudi RA, Matutes E, Tuset E, Catovsky D. p53 abnormalities in splenic lymphoma with villous lymphocytes. Blood 97(11), 3552–3558 (2001).
  • Dierlamm J, Baens M, Wlodarska I etal The apoptosis inhibitor gene API2 and a novel 18q gene, MU; are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93(11), 3601–3609 (1999).
  • Streubel B, Lamprecht A, Dierlamm J etal t(14;18) (q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101(6), 2335–2339 (2003).
  • Willis TG, Jadayel DM, Du MQ etal Bc1-10 is involved in t(1;14)(p22;q32) of MALT B-cell lymphoma and mutated in multiple tumor types. Ce1196(1), 35–45 (1999).
  • Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A et al Resistance of t (11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet 357(9249), 39–40 (2001).
  • •Providing a rationale for molecular testing in gastric mucosa-associated lymphoid tissue (MALT) lymphoma.
  • Starostik P, Patzner J, Greiner A etal Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood 99(1), 3–9 (2002).
  • ••Elegant genomic dissection of MALTlymphomas, revealing divergent genetic pathways.
  • Okabe M, Inagaki H, Ohshima K etal API2-MALT1 fusion defines a distinctive clinicopathologic subtype in pulmonary extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Am. Pathol 162(4), 1113–1122 (2003).
  • Bahler DW, Pindzola JA, Swerdlow SH. Splenic marginal zone lymphomas appear to originate from different B-cell types. Am. Pathol 161(1), 81–88 (2002).
  • Kuppers R, Schwering I, Brauninger A, Rajewsky K, Hansmann ML. Biology of Hodgkin's lymphoma. Ann. Oncol 13\(Suppl. 1), 11–18 (2002).
  • ••Wonderful synopsis of the elegant singlecell studies emanating from these authors' laboratories.
  • Pileri SA, Ascani S, Leoncini L et al. Hodgkin's lymphoma: the pathologist's viewpoint.j Clin. Path& 55(3), 162–176 (2002).
  • Kuppers R, Klein U, Schwering I etal Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. j Clin. Invest. 111(4), 529–537 (2003).
  • Cossman J, Messineo C, Bagg A. Reed-Sternberg cell: survival in a hostile sea. Lab. Invest. 78(3), 229–235 (1998).
  • Thomas RK, Re D, Zander T, Wolf J, Diehl V. Epidemiology and etiology of Hodgkin's lymphoma. Ann. Oncol 13\(Suppl. 4), 147–152 (2002).
  • ••Insightful summary of the mechanismsunderlying the development of Hodgkin lymphoma.
  • Jungnickel B, Staratschek-Jox A, Brauninger A etal Clonal deleterious mutations in the IlcBct gene in the malignant cells in Hodgkin's lymphoma. Exp. Med. 191 (2), 395–402 (2000).
  • ••First documentation of a novel mutationalevent in Hodgkin lymphoma.
  • Knecht H, Berger C, Rothenberger S, Odermatt BF, Brousset P. The role of Epstein—Barr virus in neoplastic transformation. Oncology60(4), 289–302 (2001).
  • Muschen M, Re D, Brauninger A etal Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res. 60(20), 5640–5643 (2000).
  • Barth TF, Martin-Subero JI, Joos S etal Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101(9), 3681–3686 (2003).
  • Wlodarska I, Nooyen P, Maes B etal Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101(2), 706–710 (2003).
  • Morris SW Xue L, Ma Z, Kinney MC. CD30* lymphomas: a distinct molecular genetic subtype of non-Hodgkin's lymphoma. BE j 1-Lematol. 113(2), 275–295 (2001).
  • •Informative summary of the state of the art in this lymphoma, from authors whose contributions to this have been paramount.
  • Cheuk W Chan JK. Timely topic: anaplastic lymphoma kinase (ALK) spreads its influence. Pathology33(1), 7–12(2001).
  • Rassidakis GZ, Jones D, Thomaides A etal Apoptotic rate in peripheral T-cell lymphomas. A study using a tissue microarray with validation on full tissue sections. Am j Clin. Pathol 118(3), 328–334 (2002).
  • Villalva C, Trempat P, Greenland C etal Isolation of differentially expressed genes in NPM-ALK-positive anaplastic large cell lymphoma. BE .1. 1-Lematol. 18(3), 791–798 (2002).
  • ten Berge RL, Oudejans JJ, Ossenkoppele GJ, Meijer CJ. ALK-negative systemic anaplastic large cell lymphoma: differential diagnostic and prognostic aspects: a review. j Pathol 200(1), 4–15 (2003).
  • Gascoyne RD, Lamant L, Martin-Subero JI etal ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood 102(7), 2568–2573 (2003).
  • Lamant L, Pulford K, Bischof D et aL Expression of the ALKtyrosine kinase gene in neuroblastoma. Am. j Podia 156(5), 1711–1721 (2000).
  • Pillay K, Govender D, Chetty R. ALK protein expression in rhabdomyosarcomas. klistopathology 41 (5), 461–467 (2002).
  • Cessna MET, Zhou H, Sanger WG etal Expression of ALK1 and p8Oin inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod. Pathol. 15(9), 931–938 (2002).
  • Evens AM, Gartenhaus RB. Molecular etiology of mature T-cell non-Hodgkins lymphomas. Front. BioscL 8, D156—D175 (2003).
  • Alonsozana EL, Stamberg J, Kumar D eta]. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic y8 T-cell lymphoma. Leukemiall (8), 1367–1372 (1997).
  • Zettl A, Ott G, Makulik A et a/. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am. Pathol 161(5), 1635–1645 (2002). too Ferrando AA, Neuberg DS, Staunton J etal Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Ce111(1), 75–87 (2002).
  • ••Unraveling the expression profiles of thesediseases, revealing disrupted and prognostically relevant pathways unrelated to chromosomal translocations.
  • Falini B, Mason DY. Proteins encoded by genes involved in chromosomal alterations in lymphoma and leukemia: clinical value of their detection by immunocytochemistry. B/ooc/99(2), 409–426 (2002). Comprehensive overview from international leaders in the development of imrnunohistochemical studies that are paramount to the practice of hematopathology.
  • Cesarman E, Chadburn A, Liu YF, Migliazza A, Dalla-Favera R, Knowles DM. BCL-6 gene mutations in post-transplantation lymphoproliferative disorders predict response to therapy and clinical outcome. B/ooc/92(7), 2294–2302 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.