47
Views
34
CrossRef citations to date
0
Altmetric
Review

Breast cancer biomarkers and molecular medicine: part II

, , , , , , , & show all
Pages 169-188 | Published online: 09 Jan 2014

References

  • Ross JS, Linette GP, Stec J etal Breast cancer biomarkers and molecular medicine. Expert Rev. Mot. Diagn. 3, 573–585 (2003).
  • Deming SL, Nass SJ, Dickson RB eta]. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. BE J. Cancer 83, 1688–1695 (2000).
  • Mizukami Y, Nonomura A, Takizawa T et al N-myc protein expression in human breast carcinoma: prognostic implications. Anticancer Res. 15, 2899–2905 (1995).
  • Schlotter CM, Vogt U, Bosse U et al C-myc, not HER-2/neu, can predict recurrence and mortality of patients with node-negative breast cancer. Breast Cancer Res. 5, R30—R36 (2003).
  • Rochlitz CF, Scott GK, Dodson JM etal Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res. 49,357–360 (1989).
  • Schondorf T, Andrack A, Niederacher D etal H-ms gene amplification or mutation is not common in human primary breast cancer. Oncol Rep. 6,1029–1033 (1999).
  • Bland KI, Konstadoulakis MM, Vezeridis MP etal Oncogene protein coexpression. Value of H-ras, c-myc, c-fos and p53 as prognostic discriminants for breast carcinoma. Ann. Surg. 221,706-720 (1995).
  • Guerin M, Sheng ZM, Andrieu N etal Strong association between c-myb and estrogen-receptor expression in human breast cancer. Oncogene 5,131–135 (1990).
  • Gee JM, Ellis TO, Robertson JF etal Immunocytochemical localization of Fos protein in human breast cancers and its relationship to a series of prognostic markers and response to endocrine therapy. Int.j Cancer64, 269–273 (1995).
  • Esteva FJ, Sahin AA, Rassidakis GZ etal Jun activation domain binding protein 1 expression is associated with low p27(Kipl) levels in node-negative breast cancer. Clin. Cancer Res. 9,5652-5659 (2003).
  • Gee JM, Barroso AF, Ellis TO etal Biological and clinical associations of c-jun activation in human breast cancer. Int.j Cancer 89,177–186 (2000).
  • Kouvaraki MA, Rassidakis GZ, Tian L etal Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27(Kip1). Cancer Res. 63,2977–2981 (2003).
  • Liu MC, Gelmann ER p53 gene mutations: case study of a clinical marker for solid tumors. Semin. Oncol 29,246–257 (2002).
  • Gasco M, Shami S, Crook T The p53 pathway in breast cancer. Breast Cancer Res. 4,70-76 (2002). Overview of p53 status and correlation with other parameters.
  • Lohmann D, Ruhri C, Schmitt M etal Accumulation of p53 protein as an indicator for p53 gene mutation in breast cancer. Diagn. Mal Pathol 2,36–41 (1993).
  • Bhargava V, Thor A, Deng G etal The association of p53 immunopositivity with tumor proliferation and other prognostic indicators in breast cancer. Mod. Pathol 7,361–368 (1994).
  • Soussi T, Beroud C. Assessing TP53 status in human tumors to evaluate clinical outcome. Nature Rev Cancer1, 233–240 (2001). Thorough review of p53 testing in clinical samples: cautions against the use of imrnunohistochemistry (IHC).
  • Borresen-Dale AL. TP53 and breast cancer. Hum. Mutat 21,292–300 (2003).
  • Thor AD, Moore DH, Edgerton SM etal p53 tumor suppressor gene: an independent marker of prognosis in breast cancers. J. Natl Cancer Inst. 84,845-855 (1992).
  • Cunningham JM, Ingle JN, Jung SH etal p53 gene expression in node positive breast cancer: relationship to DNA ploidy and prognosis. .1. Natl Cancer Inst. 86, 1871–1873 (1994).
  • Caleffi M, Teague MW Jensen RA etal p53 gene mutations and steroid receptor status in breast carcinoma. Clinical pathologic correlations and prognostic assessment. Cancer 73,2147–2156 (1994).
  • Marks JR, Humphrey PA, Wu K etal Overexpression of p53 and Her-2/neu proteins as prognostic markers in early stage breast cancer. Ann. Surg: 219,332-341 (1994).
  • Beck T, Weller EE, Weikel Wet al. Usefulness of immunohistochemical staining for p53 in the prognosis of breast carcinomas: correlation with established prognosis parameters and with the proliferation marker, MIB-1. Cynecol Once]. 57,96-104 (1995).
  • Borg A, Lennerstand J, Stenmark-Askmalm M etal Prognostic significance of p53 overexpression in primary breast cancer: a novel luminometric immunoassay applicable on steroid receptor cytosols. Br. Cancer71, 1013–1017 (1995).
  • Bland KI, Konstadoulakis MM, Vezeridis MP etal Oncogene protein co-expression. Value of H-ras, c-myc, c-fos and p53 as prognostic discriminants for breast carcinoma. Ann. Surg. 221,706-718 (1995).
  • Peyrat J-P, Bonneterre J, Lubin R etal Prognostic significance of circulating p53 antibodies in patients undergoing surgery for local regional breast cancer. Lancet 345, 621–622 (1995).
  • Katoh A, Breier S, Stemmler N etal p53 protein expression in human breast carcinoma: lack of prognostic potential for recurrence of the disease. Anticancer Res. 16, 1301–1304 (1996).
  • Soong R, Iacopetta BJ, Harvey JM etal Detection of p53 gene mutation by rapid PCR-SSCP and its association with poor survival in breast cancer. Clin. Cancer Res. 6,443-451 (2000).
  • Clahsen PC, van de Velde CJ, Duval C etal p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J. Clin. Once]. 16, 470–479 (1998).
  • Rozan S, Vincent-Salomon A, Zafrani B etal No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. int. J. Cancer 79,27–33 (1998).
  • Peyrat JP, Vanlemmens L, Fournier etal Prognostic value of p53 and urokinase-type plasminogen activator in node-negative human breast cancers. Clin. Cancer Res. 4, 189–196 (1998).
  • Levesque MA, Yu H, Clark GM, Diamandis ER Enzyme-linked immunoabsorbent assay-detected p53 protein accumulation: a prognostic factor in a large breast cancer cohort. J. Clin. Once]. 16,2641-2650 (1998).
  • Jansen RL, Joosten-Achjanie SR, Volovics A etal Relevance of the expression of bc1-2 in combination with p53 as a prognostic factor in breast cancer. Anticancer Res. 18, 4455–4462 (1998).
  • Harbeck N, Dettmar P, Thomssen C etal Risk-group discrimination in node-negative breast cancer using invasion and proliferation markers: 6-year median follow-up. Brj Cancer80, 419–426 (1999).
  • Broet P, Spyratos F, Romain S etal Prognostic value of uPA and p53 accumulation measured by quantitative biochemical assays in 1245 primary breast cancer patients: a multicentre study. Br.Cancer 80,536–545 (1999).
  • Reed W, Hannisdal E, Boehler PJ etal The prognostic value of p53 and c-erb Bc1-2 immunostaining is overrated for patients with lymph node negative breast carcinoma: a multivariate analysis of prognostic factors in 613 patients with a follow-up of 14-30 years. Cancer 88, 804–813 (2000).
  • Berns EM, Foekens JA, Vossen R etal Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res. 60, 2155–2162 (2000).
  • Ferrero JM, Ramaioli A, Formento JL etal P53 determination alongside classical prognostic factors in node-negative breast cancer: an evaluation at more than 10-year follow-up. Ann. Oncol 11,393–397 (2000).
  • Bottini A, Berruti A, Bersiga A etal p53 but not bc1-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. Clin. Cancer Res. 6, 2751–2758 (2000).
  • Geisler S, Lonning PE, Aas T etal Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res. 61, 2505–2512 (2001).
  • Montero S, Guzman C, Vargas C eta]. Prognostic value of cytosolic p53 protein in breast cancer. Tumour Biol. 22,337-344 (2001).
  • Tsutsui S, Ohno S, Murakam S eta]. Prognostic value of p53 protein expression in breast cancer: an immunohistochemical analysis of frozen sections in 514 Japanese women. Breast Cancer 8,194–201 (2001).
  • OHanlon DM, Kiely M, MacConmara M eta]. An immunohistochemical study of p21 and p53 expression in primary node-positive breast carcinoma. Eur. Sing Oncol 28,103–107 (2002).
  • Shao ZM, Wu J, Shen ZZ et al p53 mutation in plasma DNA and its prognostic value in breast cancer patients. Clin. Cancer Res. 7,2222-2227 (2001).
  • Kato T, Kameoka S, Kimura T et al p53, mitosis, apoptosis and necrosis as prognostic indicators of long-term survival in breast cancer. Anticancer Res. 22, 1105–1112 (2002).
  • Tahan SR, Neuberg DS, Dieffenbach A etal Prediction of early relapse and shortened survival in patients with breast cancer by proliferating cell nuclear antigen score. Cancer71, 3552–3559 (1993).
  • Chen HH, Su WC, Guo HR eta]. p53 and c-erbB-2 but not bc1-2 are predictive of metastasis-free survival in breast cancer patients receiving post-mastectomy adjuvant radiotherapy in Taiwan. Jpn. Clin. Oncol 32,332–339 (2002).
  • Lohmann D, Ruhri C, Schmitt M etal Accumulation of p53 protein as an indicator for p53 gene mutation in breast cancer. Dagn. Mal Pallid 2,36–41 (1993).
  • Bhargava V, Thor A, Deng G etal The association of p53 immunopositivity with tumor proliferation and other prognostic indicators in breast cancer. Mod. Pallid 7,361–368 (1994).
  • Rosanelli GP, Steindorfer P, Wirnsberger GH eta]. Mutant p53 expression and DNA analysis in human breast cancer. Comparison with conventional clinicopathological parameters. Anticancer Res. 15,581-586 (1995).
  • Pelosi G, Bresaola E, Rodella S etal Expression of proliferating cell nuclear antigen, Ki-67 antigen, estrogen receptor protein and tumor suppressor p53 gene in cytologic samples of breast cancer: an immunochemical study with clinical, pathobiological, and histologic correlations. Diagn. Cytopatholll, 131–140 (1994).
  • Daidone MG, Veneroni S, Benini E etal Biological markers as indicators of response to primary and adjuvant chemotherapy in breast cancer. Int.j Cancer84, 580–586 (1999).
  • Kandioler-Eckersberger D, Ludwig C, Rudas M etal TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin. Cancer Res. 6,50-56 (2000).
  • Bertheau P, Plassa F, Espie M etal Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360,852–854 (2002).
  • Sjostrom J, Blomqvist C, Heikkila P etal Predictive value of p53, mdm-2, p21 and mib-1 for chemotherapy response in advanced breast cancer. Clin. Cancer Res. 6, 3103–3110 (2000).
  • Van Poznak C, Tan L, Panageas KS etal Assessment of molecular markers of clinical sensitivity to single-agent taxane therapy for metastatic breast cancer. j Clin. Oncol 20, 2319–2926 (2002).
  • Hamilton A, Larsimont D, Paridaens R etal A study of the value of p53, HER2 and Bc1-2 in the prediction of response to doxorubicin and paclitaxel as single agents in metastatic breast cancer: a companion study to EORTC 10923. Clin. Breast Cancer 1,233–240 (2000).
  • Knoop AS, Bentzen SM, Nielsen MM etal Value of epidermal growth factor receptor, HER2, p53 and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients. Clin. Oncol 19,3376–3384 (2001).
  • Quesnel B, Preudhomme C, Fournier J etal MDM2 gene amplification in human breast cancer. Eur j Cancer 30A, 982–984 (1994).
  • McCann AH, Kirley A, Carney DN eta]. Amplification of the MDM2 gene in human breast cancer and its association with MDMp53 protein status. BE J. Cancer 71,981–985 (1995).
  • Bueso-Ramos CE, Manshouri T, Haidar MA etal Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res. 7i-eat. 37,179-188 (1996).
  • Jiang M, Shao ZM, Wu J etal p21/waflicipl and mdm-2 expression in breast carcinoma patients as related to prognosis. Int.j Cancer74, 529–534 (1997).
  • Mathoulin-Portier MP, Viens P, Cowen D etal Prognostic value of simultaneous expression of p21 and mdm2 in breast carcinomas treated by adjuvant chemotherapy with anthracycline. Oncol Rep. 7,675–680 (2000).
  • Cuny M, Kramar A, Courjal F etal Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res. 60,1077–1083 (2000).
  • Bankfalvi A, Tory K, Kemper M etal Clinical relevance of immunohistochemical expression of p53-targeted gene products mdm-2, p21 and bc1-2 in breast carcinoma. Pathol Res. Pract. 196,489-501 (2000).
  • Benedict WF, Xu H-J, Takahashi R. The retinoblastoma gene: its role in human malignancies. Cancer Invest. 8,535–540 (1990).
  • Varley JM, Armour J, Swallow JE etal The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumors. Oncogene 4, 725–729 (1989).
  • Berns EM, de Klein A, van Putten WL etal Association between RB-1 gene alterations and factors of favourable prognosis in human breast cancer, without effect on survival. Int.J Cancer64, 140–145 (1995).
  • Postel EH. NM23-NDP kinase. Int. Biochem. Cell. Biol. 30,1291-1295 (1998).
  • Duenas-Gonzalez A, Abad-Hernandez MM, Garcia-Mata J etal Analysis of nm23-H1 expression in breast cancer. Correlation with p53 expression and clinicopathologic findings. Cancer Lett. 101,137-142 (1996).
  • Mao H, Liu H, Fu X et al Loss of nm23 expression predicts distal metastases and poorer survival for breast cancer. Int.j Oncol 18,587–591 (2001).
  • Terasaki-Fukuzawa Y, Kijima H, Suto A etal Decreased nm23 expression but not Ki-67 labeling index, is significantly correlated with lymph node metastasis of breast invasive ductal carcinoma. Int. Mal Med. 9,25-29 (2002).
  • Gohring UJ, Eustermann I, Becker M etal Lack of prognostic significance of nm23 expression in human primary breast cancer. Oncol Rep. 9,1205–1208 (2002).
  • Belev B, Aleric I, Vrbanec D etal Nm23 gene product expression in invasive breast cancer: immunohistochemical analysis and clinicopathological correlation. Acta Oncol 41,355–361 (2002).
  • Lee MET, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mal life Sc]. 58,1907–1922 (2001).
  • Sherr CJ. The INK4a/ARF network in tumour suppression. Nature Rev Mal Cell Biol. 2,731–737 (2001).
  • Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002).
  • Hui R, Macmillan RD, Kenny FS et al INK4a gene expression and methylation in primary breast cancer: overexpression of pl6INK4a messenger RNA is a marker of poor prognosis. Clin. Cancer Res. 6, 2777–2787 (2000).
  • Han S, Ahn SH, Park K et al P16INK4a protein expression is associated with poor survival of the breast cancer patients after CMF chemotherapy. Breast Cancer Res. 7i-eat. 70,205-212 (2001).
  • Milde-Langosch K, Bamberger AM, Rieck G et al Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res. Treat. 67, 61–70 (2001).
  • Ito Y, Kobayashi T, Takeda T et al Expression of p16 and cyclin-dependent kinase 4 proteins in primary breast carcinomas. Oncology54, 508–515 (1997).
  • Span PN, Manders P, Heuvel JJ etal Expression of the transcription factor Ets-1 is an independent prognostic marker for relapse-free survival in breast cancer. Oncogene 21,8506–8509 (2002).
  • Mills GB, Lu Y, Fang X etal The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis and therapy. Semin. Oncol 28,125–141 (2001).
  • Mayo LD, Donner DB. The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem. Sc]. 27,462-467 (2002).
  • Depowski PL, Rosenthal SI, Ross JS. Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Mod. Pallid 14, 672–676 (2001).
  • Maass N, Teffner M, Rosel F etal Decline in the expression of the serine proteinase inhibitor maspin is associated with tumor progression in ductal carcinomas of the breast. J. Pallid 195, 321–326 (2001).
  • Umekita Y, Ohi Y, Sagara Y etal Expression of maspin predicts poor prognosis in breast cancer patients. Int.j Cancer 100,452–455 (2002).
  • Corradini P, Voena C, Astolfi M eta]. Maspin and mammaglobin genes are specific markers for RT-PCR detection of minimal residual disease in patients with breast cancer. Ann. Oncol 12,1693–1698 (2001).
  • Mohsin SK, Zhang M, Clark GM etal Maspin expression in invasive breast cancer: association with other prognostic factors. Pathol 199,432–435 (2003).
  • Wei M, Grushko T, Hagos F eta]. Hypermethylation of BRCA1 promoter in sporadic breast cancer: comparison with BRCA1 associated breast cancer. Breast Cancer Res. Treat. 76\(Suppl. 1), S35 (2002) (Abstract 26).
  • Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules in cancer biology. Adv. Exp. Med. Biol. 465,115-126 (2000). Overview of cell adhesion molecule biology in cancer and potential roles in invasion and metastasis.
  • Skubitz AP. Adhesion molecules. Cancer Brat. Res. 107,305–329 (2002).
  • Berx G, Van Roy E The E-cadherinicatenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 3,289–293 (2001).
  • Barker N, Clevers H. Catenins, Wnt signaling and cancer. Bioassays22,961–965 (2000).
  • Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherinicatenin cell—cell adhesion complex and human cancer. BE j Surg. 87, 992–1005 (2000).
  • Beavon IR. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. Eur J. Cancer 36, 1607–1620 (2000).
  • Charpin C, Garcia S, Bonnier P etal Reduced E-cadherin immunohistochemical expression in node-negative breast carcinomas correlates with 10-year survival. Am.Clin. Pathol 109,431–438 (1998).
  • Parker C, Rampaul RS, Pinder SE etal E-cadherin as a prognostic indicator in primary breast cancer. BE J. Cancer 85, 1958–1963 (2001).
  • Yoshida R, Kimura N, Harada Y etal The loss of E-cadherin, and P-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int.j Oncol 18,513–520 (2001).
  • Gillett CE, Miles DVV, Ryder K etal Retention of the expression of E-cadherin and catenins is associated with shorter survival in grade III ductal carcinoma of the breast. Pathol 193,433–441 (2001).
  • Cheng CW, Wu PE, Yu JC etal Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 20,3814–3823 (2001).
  • Reis-Filho JS, Cancela Paredes J, Milanezi F etal Clinicopathologic implications of E-cadherin reactivity in patients with lobular carcinoma in situ of the breast. Cancer94, 2114–2115 (2002).
  • Chan JK, Wong CS. Loss of E-cadherin is the fundamental defect in diffuse-type gastric carcinoma and infiltrating lobular carcinoma of the breast. Adv. Anat. Pathol 8,165–172 (2001).
  • Kleer CG, van Golen KL, Braun T eta]. Persistent E-cadherin expression in inflammatory breast cancer. Mod. Pathol 14,458–464 (2001).
  • Burguignon LY. CD44-mediated oncogenic signaling and cytoskeleton activation during mammary tumor progression. Mammary Gland Biol. Neoplasia 6, 287–297 (2001).
  • Joensuu H, Klemi PJ, Toildcanen S etal Glycoprotein CD44 expression and its association with survival in breast cancer. Am. Pathol 143,866–874 (1993).
  • Foekens JA, Dall P, Klijn JG etal Prognostic value of CD44 variant expression in primary breast cancer. Int.j Cancer84, 209–215 (1999).
  • Guriec N, Gairard B, Marcellin L etal CD44 isoforms with exon v6 and metastasis of primary NOMO breast carcinomas. Breast Cancer Res. Treat. 44, 261–268 (1997).
  • Schumacher U, Horny HP, Horst HA etal A CD44 variant exon 6 epitope as a prognostic indicator in breast cancer. Eur.j Surg. Oncol 22,259–261 (1996).
  • Morris SF, OHanlon DM, McLaughlin R etal The prognostic significance of CD44s and CD44v6 expression in Stage II breast carcinoma: an immunohistochemical study. Eur.j Surg. Oncol 27,527-531 (2001). iii Jansen RII, Joosten-Achjanie SR, Arends JVV etal CD44v6 is not a prognostic factor in primary breast cancer. Ann. Oncol 9,109–111 (1998).
  • Sheen-Chen SM, Chen WJ, Eng HL etal Evaluation of the prognostic value of serum soluble CD44 in patients with breast cancer. Cancer Invest. 17,581–585 (1999).
  • Kopp R, Classen S, Wolf H etal Predictive relevance of soluble CD44v6 serum levels for the responsiveness to second line hormone- or chemotherapy in patients with metastatic breast cancer. Anticancer Res. 21,2995–3000 (2001).
  • Ivaska J, Heino J. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mal Life Sci. 57,16–24 (2000).
  • Marques LA, Franco ELF, Tortoni H eta]. Independent prognostic value on laminin receptor expression in breast cancer survival. Cancer Res. 50,1479–1483 (1990).
  • D-Errico A, Garbisa S, Liotta LA eta]. Augmentation of Type IV collagenase laminin receptor and ki67 proliferation antigen associated with human colon, gastric and breast carcinoma progression. Mod. Pallid 4,239–246 (1991).
  • Daidone MG, Silvestrini R, D'Errico A et al Laminin receptors, collagenase IV and prognosis in node-negative breast cancers. Int.J Cancer 48, 529–532 (1991).
  • D-Errico A, Garbisa S, Liotta LA eta]. Augmentation of Type IV collagenase laminin receptor and k167 proliferation antigen associated with human colon, gastric and breast carcinoma progression. Mod. Pathol 4,239–246 (1991).
  • Gasparini G, Brooks PC, Biganzoli E etal Vascular integrin a(v)133, a new prognostic indicator in breast cancer. Clin. Cancer Res. 4,2625-2634 (1998).
  • Tagliabue E, Ghirelli C, Squicciarini P eta]. Prognostic value of a634 integrin expression in breast carcinomas is affected by laminin production from tumor cells. Clin. Cancer Res. 4,407-410 (1998).
  • Friedrichs K, Ruiz P, Franke F etal High expression level of a6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res. 55,901–906 (1995).
  • Gastl G, Spizzo G, Obrist P eta]. Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet 356,1981–1982 (2000).
  • Braun S, Pantel K. Prognostic significance of micrometastatic bone marrow involvement. Breast Cancer Res. Treat. 52, 201–216 (1998).
  • Schwartzberg LS. Clinical experience with edrecolomab: a monoclonal antibody therapy for colorectal carcinoma. Grit. Rev Oncol Hematol 40,17–24 (2001).
  • Rochefort H, Chalbos D, Cunat S eta]. Estrogen regulated proteases and antiproteases in ovarian and breast cancer cells. .1. Steroid Biochem. Mal Biol. 76, 119–124 (2001).
  • Thorpe SM, Rocheford H, Garcia M eta]. Association between high concentration of M52,000 cathepsin D and poor prognosis in primary breast cancer. Cancer Res. 49, 6008–6014 (1989).
  • Tandon AK, Clark GM, Chamness GC etal Cathepsin D and prognosis in breast cancer. N Engif Med. 322,297-302 (1990). Initial interest in cathepsin D testing faded when it became clear that the assay was only useful when performed on fresh tissue or protein extracts.
  • Kute TE, Shao ZM, Sugg NK eta]. Cathepsin D as a prognostic indicator for node-negative breast cancer patients using both immunoassays and enzymatic assays. Cancer Res. 52,5198–5203 (1992).
  • Henry JA, McCarthy Al, Angus B eta]. Prognostic significance of the estrogen regulated protein, cathepsin D, in breast cancer. An immunohistochemical study. Cancer 65,265–271 (1990).
  • Visscher DW, Sarkar F, LoRusso P eta]. Immunohistologic evaluation on invasion-associated proteases in breast carcinoma. Mod. Athol 6,302–306 (1993).
  • Mokbel K, Elkak A. Recent advances in breast cancer (the 37th ASCO meeting, May 2001). CUI7: Med. Res. Opin. 17, 116–122 (2001).
  • Harbeck N, Schmitt M, Kates RE eta]. Clinical utility of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 determination in primary breast cancer tissue for individualized therapy concepts. Clin. Breast Cancer3, 196–200 (2002).
  • Harbeck N, Kates RE, Look MP eta]. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res. 62,4617-4622 (2002).
  • Duffy MJ. Urokinase plasminogen activator and its inhibitor, PM-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin. Chem. 48, 1194–1197 (2002).
  • Harbeck N, Kates RE, Schmitt M. Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. Clin. Oncol 20,1000-1007 (2002). The plasminogen proteases are reliable and accurate prognostic factors, but are limited by their current requirement for fresh protein extracts for testing.
  • Qin W, Zhu W, Wagner-Mann C. Nipple aspirate fluid expression of urokinase-type plasminogen activator, plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor predicts breast cancer diagnosis and advanced disease. Ann. Surg. Oncol 10, 948–953 (2003).
  • Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer2, 161–74 (2002).
  • Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev Mal Cell Biol. 3,207–214 (2002).
  • McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med. Today6, 149–156 (2000).
  • Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res. Treat. 50, 97–116 (1998).
  • Porter-Jordan K, Hoyhtya M, Barnes R etal Prognostic value of the level of matrix metalloprotease-2 in the fibroblasts surrounding infiltrating ductal carcinoma of the breast. Breast Cancer Res. Treat 23, 149 (1992).
  • Talvensaari-Mattila A, Paaldco P, Hoyhtya M etal Matrix metalloproteinase-2 immunoreactive protein: a marker of aggressiveness in breast carcinoma. Cancer 83, 1153–1162 (1998).
  • Talvensaari-Mattila A, Paaldco P, Turpeenniemi-Hujanen T MMP-2 positivity and age less than 40 years increases the risk for recurrence in premenopausal patients with node-positive breast carcinoma. Breast Cancer Res. Treat. 58,287-293 (1999).
  • Talvensaari-Mattila A, Paaldco P, Blanco-Sequeiros G et al Matrix metalloproteinase-2 (MMP-2) is associated with the risk for a relapse in postmenopausal patients with node-positive breast carcinoma treated with anti-estrogen adjuvant therapy. Breast Cancer Res. Treat. 65, 55–61 (2001).
  • Pacheco MM, Nishimoto IN, Mourao Neto M etal Prognostic significance of the combined expression of matrix metalloproteinase-9, urokinase type plasminogen activator and its receptor in breast cancer as measured by northern blot analysis. Int." Biol. Markers 16,62–68 (2001).
  • Scorilas A, Karameris A, Arnogiannaki N etal Overexpression of matrix-metalloproteinase-9 in human breast cancer: a potential favourable indicator in node-negative patients. BE j Cancer 84, 1488–1496 (2001).
  • Chenard MP, OSiorain L, Shering S eta]. High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int.j Cancer 69,448–451 (1996).
  • McCarthy K, Maguire T, McGreal G etal High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. int. j Cancer 84,44–48 (1999).
  • Rasmussen HS, McCann PR Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Phatmacol Ther. 75,69–75 (1997).
  • Osborne CK. Steroid hormone receptors in breast cancer management. Breast Cancer Res. Treat. 51,227–238 (1998).
  • Locker GY. Hormonal therapy of breast cancer. Cancer Treat. Rev 24,221–240 (1998).
  • Pusztai L, Ayers M, Stec J eta]. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin. Cancer Res. 9, 2406–2415 (2003).
  • Masood S. Prediction of recurrence for advanced breast cancer. Traditional and contemporary pathologic and molecular markers. Sorg. Oncol Clin. N Am 4, 601–632 (1995).
  • Wilbur DC, Willis J, Mooney RA eta]. Estrogen and progesterone detection in archival formalin-fixed paraffin embedded tissue from breast carcinoma: a comparison of immunocytochemistry with dextran coated charcoal assay. Mod. Pathol 5,79-84(1992).
  • Bezwoda WR, Esser JD, Dansey R etal The value of estrogen progesterone receptor determinations in advanced breast cancer. Cancer68, 867–872 (1991).
  • Lemieux P, Fuqua S. The role of the estrogen receptor in tumor progression. j Steroid Biochem. Mal Biol. 56,87–91 (1996).
  • Clemons M, Damon S, Howell A. Tamoxifen ('Nolvadex): a review. Cancer Beat. Rev 28,165–180 (2002).
  • Ciocca DR, Elledge R. Molecular markers for predicting response to tamoxifen in breast cancer patients. Endocrine 13,1–10 (2000).
  • Ibrahim NK, Hortobagyi GN. The evolving role of specific estrogen receptor modulators (SERMs). Sorg. Oncol 8(2), 103–123 (1999).
  • Miller WR, Anderson TJ, Dixon JM. Antitumor effects of letrozole. Cancer Invest. 20,15–21 (2002).
  • Buzdar AU, Robertson JF, Eiermann W etal An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole and exemestane. Cancer 95,2006–20016 (2002).
  • Ellis MJ, Coop A, Singh B etal Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a Phase III randomized trial. Clin. Oncol 19,3808-3816 (2001). The concept that HER-2/neu status can predict response to specific antiestrogen therapy is considered.
  • Dowsett M, Harper-Wynne C, Boeddinghaus I etal HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res. 61,8452–8458 (2001).
  • Decker DA, Morris LW Levine AJ etal Multi-drug resistance phenotype: a potential marker of chemotherapy resistance in breast cancer. Lab. Med. 24, 574–578 (1993).
  • Wang CS, LaRue H, Fortin A etal mdR1 mRNA expression by RT-PCR in patients with primary breast cancer submitted to neoadjuvant therapy. Breast Cancer Res. Treat. 45,63-74 (1997).
  • Trock BJ, Leonessa F, Clarke R. Multi-drug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. Natl Cancer Inst. 89,917-931 (1997).
  • Batiste G, Tulpule A, Shinha BK etal Overexpression of a novel and an ionic glutathionic transferase in multi-drug-resistant human breast cancer cells. .1. Biol. Chem. 261,15554-15549 (1986).
  • Satta T, Isobe K, Yamauchi M etal Expression of MDR1 and glutathione s-transferase genes and chemosensitivities in human gastrointestinal cancer. Cancer 69, 941–946 (1992).
  • Ardavanis A, Gerakini F, Amanatidou A etal Relationships between cathepsin-D, pS2 protein and hormonal receptors in breast cancer cytosols: inconsistency with their established prognostic significance. Anticancer Res. 17,3665–3669 (1997).
  • Dittadi R, Biganzoli E, Boracchi P eta]. Impact of steroid receptors, pS2 and cathepsin D on the outcome of N+ postmenopausal breast cancer patients treated with tamoxifen. Int. j Biol. Markers 13,30–41 (1998).
  • Fuqua SA, Oesterreich S, Hilsenbeck SG et al Heat shock proteins and drug resistance. Breast Cancer Res. Treat. 32, 67–71 (1994).
  • Chamness GC. Estrogen-inducible heat shock protein hsp27 predicts recurrence in node-negative breast cancer. Proc. Am. Assoc. Cancer Res. 30,252 (1989).
  • Ciocca DR, Clark GM, Tandon AK eta]. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. j Natl Cancer Inst. 85,570-574 (1993).
  • Tetu B, Brisson J, Landry J eta]. Prognostic significance of heat-shock protein-27 in node-positive breast carcinoma: an immunohistochemical study. Breast Cancer Res. Treat. 36,93-97 (1995).
  • Oesterreich S, Hilsenbeck SG, Ciocca DR eta]. The small heat shock protein H5P27 is not an independent prognostic marker in axillary lymph node-negative breast cancer patients. Clin. Cancer Res. 2,1199-1206 (1996).
  • Parton M, Dowsett M, Smith I. Studies of apoptosis in breast cancer. BE Med. 1. 322, 1528–1532 (2001).
  • Berardo MD, Elledge RM, de Moor C etal bc1-2 and apoptosis in lymph node positive breast carcinoma. Cancer 82,1296–1302 (1998).
  • Zhang GJ, Kimijima I, Abe R etal Apoptotic index correlates to Bc1-2 and p53 protein expression, histological grade and prognosis in invasive breast cancers. Anticancer Res. 18,1989–1998 (1998).
  • De Jong JS, van Diest PJ, Baak JR Number of apoptotic cells as a prognostic marker in invasive breast cancer. BE Cancer 82,368–373 (2000).
  • Gonzalez-Campora R, Galera Ruiz MR, Vazquez Ramirez F etal Apoptosis in breast carcinoma. Pathol Res. Pract. 196, 167–174 (2000).
  • Krajewski S, Krajewska M, Turner BC eta]. Prognostic significance of apoptosis regulators in breast cancer. Endocc Re/at. Cancer6, 29–40 (1999).
  • Yang Q, Sakurai T, Yoshimura G etal Prognostic value of Bc1-2 in invasive breast cancer receiving chemotherapy and endocrine therapy. Oncol Rep. 10,121–125 (2003).
  • Sjostrom J, Blomqvist C, von Boguslawski K etal The predictive value of bc1-2, bax, bc1-xL, bag-1, fas and fasL for chemotherapy response in advanced breast cancer. Clin. Cancer Res. 8,811-816 (2002).
  • Valdcala M, Paaldm P, Soini Y. Expression of caspases 3,6 and 8 is increased in parallel with apoptosis and histological aggressiveness of the breast lesion. Br. Cancer 81,592–599 (1999).
  • Nakopoulou L, Alexandrou P, Stefanaki K et al Immunohistochemical expression of caspase-3 as an adverse indicator of the clinical outcome in human breast cancer. Pathobiology69, 266–273 (2001).
  • Devarajan E, Sahin AA, Chen JS eta]. Downregulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21,8843–8851 (2002).
  • Baldwin AS. The NF-KB and IKB proteins: new discoveries and insights. Ann. Rev Immunol 14,649–683 (1996).
  • Orlowski RZ, Baldwin AS. NF-KB as a therapeutic target in cancer. 7i-ends Mal Med. 8(8), 385–389 (2002).
  • Karin M, Cao Y, Greten FR etal NF-KB in cancer: from innocent bystander to major culprit. Nature Rev Cancer2, 301–310 (2002).
  • Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Cum Opin. Chem. Biol. 6,493-500 (2002).
  • Biswas DK, Dai SC, Cruz A eta]. The nuclear factor KB (NF-KB): a potential therapeutic target for estrogen receptor negative breast cancers. Proc. Natl Acad. Li. USA 98,10386–10391 (2001).
  • Span PN, Manders P, Heuvel JJ etal Expression of the transcription factor Ets-1 is an independent prognostic marker for relapse-free survival in breast cancer. Oncogene 21,8506–8509 (2002).
  • Jonsson M, Dejmek J, Bendahl PO etal Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62,409–416 (2002).
  • Herbert BS, Wright WE, Shay JW. Telomerase and breast cancer. Breast Cancer Res. 3,146–149 (2001).
  • Carey LA, Kim NW Goodman S eta]. Telomerase activity and prognosis in primary breast cancers. J. Clin. Oncol 17, 3075–3081 (1999).
  • Mokbel K, Parris CN, Radbourne R etal Telomerase activity and prognosis in breast cancer. Eur j Surg. Oncol 25,269–272 (1999).
  • Mueller C, Riese U, Kosmehl H etal Telomerase activity in microdissected human breast cancer tissues: association with p53, p21 and outcome. Int. J. Oncol 20,385–390 (2002).
  • Bieche I, Nogues C, Paradis V etal. Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin. Cancer Res. 6,452–429 (2000).
  • Poremba C, Heine B, Diallo R etal Telomerase as a prognostic marker in breast cancer: high-throughput tissue microarray analysis of hTERT and hTR. j Pathol 198, 181–189 (2002).
  • Andrew SE, Peters AC. DNA instability and human disease. Am. J. Pharmacogenomics 1,21–28 (2001).
  • Ozer E, Yuksel E, Kizildag S etal Microsatellite instability in early-onset breast cancer. Pathol Res. Pract. 198, 525–530 (2002).
  • Tomita S, Deguchi S, Miyaguni T etal Analyses of microsatellite instability and the transforming growth factor-0 receptor Type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res. 7i-eat. 53,33-39 (1999).
  • Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene 21,5462–5482 (2002).
  • Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocr Relat. Cancer8, 115–127 (2001).
  • Yang X, Phillips DL, Ferguson AT etal Synergistic activation of functional estrogen receptor (ER)-a by DNA methyltransferase and histone deacetylase inhibition in human ER-a-negative breast cancer cells. Cancer Res. 61,7025–7029 (2001).
  • Platt-Higgins AM, Renshaw CA, West CR etal Comparison of the metastasis-inducing protein S100A4 (p9ka) with other prognostic markers in human breast cancer. Int.j Cancer89, 198–208 (2000).
  • Xu Y, Kimura N, Yoshida R etal Immunohistochemical study of Mucl, Muc2 and human gastric mucin in breast carcinoma: relationship with prognostic factors. Oncol Rep. 8,1177–1182 (2001).
  • Ristimaki A, Sivula A, Lundin J eta]. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 62,632-635 (2002).
  • Luftner D, Possinger K. Nuclear matrix proteins as biomarkers for breast cancer. Expert Rev. Mal Diagn. 2,23–31 (2002).
  • Chen YT, Scanlan MJ, Sahin U eta]. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci USA 94,1914–1918 (1997).
  • Kavalar R, Sarcevic B, Spagnoli GC etal Expression of MAGE tumour-associated antigens is inversely correlated with tumour differentiation in invasive ductal breast cancers: an immunohistochemical study. Virrhows Arrh. 439,127–131 (2001).
  • Otte M, Zafrakas M, Riethdorf L etal MAGE-A gene expression pattern in primary breast cancer. Cancer Res. 61, 6682–6687 (2001).
  • Miyashiro I, Kuo C, Huynh K etal Molecular strategy for detecting metastatic cancers with use of multiple tumor-specific MAGE-A genes. Clin. Chem. 47,505–512 (2001).
  • Bertucci F, Houlgatte R, Benziane A eta]. Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum. Mal Genet. 9,2981–2991 (2000).
  • Sorlie T, Perou CM, Tthshirani R etal Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98,10869-10874 (2001). Initial discovery study of gene expression and breast cancer biology.
  • van 't Veer LJ, Dai H, van de Vijver MJ etal Gene expression profiling predicts clinical outcome of breast cancer. Nature 415,530-536 (2002).
  • **Transcriptional profiling of breast cancerswith long-term follow-up links patterns of gene expression with overall and disease-free survival.
  • van de Vijver MJ, He YD, van't Veer LJ etal A gene-expression signature as a predictor of survival in breast cancer. N. Engl. Med 347,1999-2009 (2002). Further details and expansion of data of clinical outcome study.
  • West M, Blanchette C, Dressman H et al Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl Acad. Sci USA 98, 11462–11467 (2001).
  • Nevins JR, Huang ES, Dressman H etal Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum. Mal Genet. 12,153–157 (2003).
  • Sotiriou C, Neo SY, McShane LM eta]. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sc]. USA 100,10393–10398(2003).
  • Russo G, Zegar C, Giordano A. Advantages and limitations of microarray technology in human cancer. Oncogene 22, 6497–6507 (2003).
  • Huang E, Cheng SH, Dressman H eta]. Gene expression predictors of breast cancer outcomes. Lancet361, 1590–1596 (2003).
  • Petricoin EF, Ardekani AM, Hitt BA eta]. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002). Can barcode surface-enhanced laser desorption ionization-based proteomics with neural network data analysis detect occult cancer in serum far earlier than currently available cancer detection methods?
  • Li J, Zhang Z, Rosenzweig J eta]. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin. Chem. 48, 1296–1304 (2002).
  • Taylor JG. Using genetic variation to study human disease. Trends Mol. Med. 7, 507–512 (2001).
  • Weber W, Estoppey J, Stoll H. Familial cancer diagnosis. Anticancer Res. 21,3631–3635(2001).
  • Ingelman-Sundberg M. Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes. Mutat. Res. 482,11–19 (2001).
  • Innocenti F, Ratain MJ. Update on pharmacogenetics in cancer chemotherapy. Eur. Cancer38, 639–644 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.