120
Views
39
CrossRef citations to date
0
Altmetric
Review

Global metabolic profiling and its role in systems biology to advance personalized medicine in the 21st Century

Pages 247-259 | Published online: 09 Jan 2014

References

  • Wiener N. Cybernetics or Control and Communication in the Animal and the Machine. 2nd Edition. MIT Press, Cambridge, MA, USA (1961).
  • Kitano H. Systems biology: a brief overview. Science295, 1662–1664 (2002).
  • Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modeling mammalian biocomplexity. Nat. Biotechnol.22, 1268–1274 (2004).
  • Westerhoff HV, Palsson BO. The evolution of molecular biology into systems biology. Nat. Biotechnol.22, 1249–1252 (2004).
  • Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol.48, 155–171 (2002).
  • Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29, 1181–1189 (1999).
  • Nicholson JK, Holmes E, Wilson ID. Gut microbes, mammalian metabolism and personalized healthcare. Nat. Rev. Microbiol.3, 2–8 (2005).
  • Reo NV. NMR-based metabolomics. Drug Chem. Toxicol.25, 375–382 (2002).
  • Griffin JL. Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr. Opin. Chem. Biol.7, 648–654 (2003).
  • Moolenaar SH, Engelke UF, Wevers RA. Proton nuclear magnetic resonance spectroscopy of body fluids in the field of inborn errors of metabolism. Ann. Clin. Biochem.40, 16–24 (2003).
  • Constantinou MA, Papakonstantinou E, Benakia D et al. Application of nuclear magnetic resonance spectroscopy combined with principal component analysis in detecting inborn errors of metabolism using blood spots: a metabonomic approach. Anal. Chim. Acta511, 303–312 (2004).
  • Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers9, 1–31 (2004).
  • Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed.18, 143–162 (2005).
  • Lindon JC, Keun H, Ebbels TM, Pearce JM, Holmes E, Nicholson JK. The consortium for metabonomic toxicology (COMET): aims, activities and achievements. Pharmacogenomics6, 691–699 (2005).
  • Schnackenberg L, Beger RD, Dragan Y. NMR-based metabonomic evaluation of livers from rats chronically treated with tamoxifen, mestranol, and phenobarbital. Metabonomics1, 87–94 (2005).
  • Beger RD, Schnackenberg LK, Li D, Dragan Y. Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics2, 125–134 (2006).
  • Holmes E, Tsang TM, Tabrizi SJ. The application of NMR-based metabonomics in neurological disorders. NeuroRx3, 358–372 (2006).
  • Portilla D, Li S, Nagothu K et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int.69, 2194–2204 (2006).
  • Schnackenberg LK, Jones RC, Thyparambil S et al. An integrated study of acute effects of valproic acid in the liver using metabonomics, proteomics, and transcriptomics platforms. Omics10, 1–14 (2006).
  • Gates SC, Sweeley CC. Quantitative metabolic profiling based on gas chromatography. Clin. Chem.24, 1663–1673 (1978).
  • Blomquist G, Johansson E, Soderstrom B, Wold S. Classification of fungi by means of pyrolysis-gas chromatography-pattern recognition. J. Chromatogr.173, 19–32 (1979).
  • McConnell ML, Rhodes G, Watson U, Novotny M. Application of pattern recognition and feature extraction techniques to volatile constituent metabolic profiles obtained by capillary gas chromatography. J. Chromatogr.162, 495–506 (1979).
  • Rhodes G, Miller M, McConnell ML, Novotny M. Metabolic abnormalities associated with diabetes mellitus, as investigated by gas chromatography and pattern-recognition analysis of profiles of volatile metabolites. Clin. Chem.27, 580–585 (1981).
  • van der Greef J, Tas AC, Bouwman J, Ten Noever de Brauw MC, Schreurs WH. Evaluation of field desorption and fast atom bombardment mass spectrometric profiles by pattern recognition techniques. Anal. Chim. Acta150, 45–52 (1983).
  • Plumb RS, Stumpf CL, Gorenstein DG et al. Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun. Mass Spectrom.16, 1991–1996 (2002).
  • Plumb RS, Stumpf CL, Granger JH, Castro-Perez J, Haselden JN, Dear GJ. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun. Mass Spectrom.17, 2632–2638 (2003).
  • Plumb RS, Granger JH, Stumpf CL et al. A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst130, 844–849 (2005).
  • Wilson ID, Nicholson JK, Castro-Perez J et al. High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res.4, 591–598 (2005).
  • Yang J, Xu G, Zheng Y et al. Strategy for metabonomics research based on high-performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A1084, 214–221 (2005).
  • Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem.24, 285–294 (2005).
  • Keun HC, Ebbels TM, Antti H et al. Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem. Res. Toxicol.15, 1380–1386 (2002).
  • Dumas ME, Maibaum EC, Teague C et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal. Chem.78, 2199–2208 (2006).
  • Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC. An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem. Res. Toxicol.16, 295–303 (2003).
  • Griffin JL, Pole JC, Nicholson JK, Carmichael PL. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy. Biochim. Biophys. Acta1619, 151–158 (2003).
  • Duarte IF, Stanley EG, Holmes E et al. Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal. Chem.77, 5570–78 (2005).
  • Garrod S, Bollard ME, Nicholls AW et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem. Res. Toxicol.18, 115–122 (2005).
  • Wang Y, Tang H, Holmes E et al. Biochemical characterization of rat intestine development using high-resolution magic-angle-spinning 1H NMR spectroscopy and multivariate data analysis. J. Proteome Res.4, 1324–1329 (2005).
  • Robertson DG. Metabonomics in toxicology: a review. Toxicol. Sci.85, 809–822 (2005).
  • Lenz EM, Wilson ID. Analytical strategies in metabonomics. J. Proteome Res.6, 443–458 (2007).
  • Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Mol. Biosyst.1, 166–175 (2005).
  • Williams RE, Lenz EM, Rantalainen M, Wilson ID. The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol. Biosyst.2, 193–202 (2006).
  • Williams RE, Lenz EM, Evans JA et al. A combined 1H NMR and HPLC-MC-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J. Pharm. Biomed. Anal.38, 465–471 (2005).
  • Lenz EM, Bright J, Knight R et al. Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat. Biomarkers10, 173–187 (2005).
  • Gu H, Chen H, Pan Z et al. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal. Chem.79, 89–97 (2007).
  • Atherton HJ, Bailey NJ, Zhang W et al. A combined 1H-NMR spectroscopy- and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiol. Genomics27, 178–186 (2006).
  • Crockford DJ, Holmes E, Lindon JC et al. Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies. Anal. Chem.78, 363–371 (2006).
  • Harrigan GG, Yates LA. High-throughput screening, metabolomics and drug discovery. IDrugs9, 188–192 (2006).
  • Bailey WJ, Ulrich R. Molecular profiling approaches for identifying novel biomarkers. Expert Opin. Drug Saf.3, 137–151 (2004).
  • Keun H. Metabonomic modeling of drug toxicity. Pharmacol. Ther.109, 92–106 (2006).
  • Beckonert O, Bollard ME, Ebbels TM et al. NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches. Anal. Chim. Acta490, 3–15 (2003).
  • Ebbels T, Keun H, Beckonert O et al. Toxicity classification from metabonomic data using a density superposition approach: ‘CLOUDS’. Anal. Chim. Acta490, 109–122 (2003).
  • Lindon JC, Nicholson JK, Holmes E et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol.187, 137–146 (2003).
  • Gartland KP, Bonner FW, Nicholson JK. Investigations into the biochemical effects of region-specific nephrotoxins. Mol. Pharmacol.35, 242–250 (1989).
  • Anthony ML, Rose VS, Nicholson JK, Lindon JC. Classification of toxin-induced changes in 1H NMR spectra of urine using an artificial neural network. J. Pharm. Biomed. Anal.13, 205–211 (1995).
  • Robertson DG, Reily MD, Sigler RE, Wells DF, Paterson DA, Braden TK. Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicol. Sci.57, 326–337 (2000).
  • Serkova NJ, Christians U. Biomarkers for toxicodynamic monitoring of immunosuppressants: NMR-based quantitative metabonomics of the blood. Ther. Drug Monit.27, 733–737 (2005).
  • Williams RE, Jacobsen M, Lock EA. 1H NMR pattern recognition and 31P NMR studies with D-serine in rat urine and kidney, time- and dose-related metabolic effects. Chem. Res. Toxicol.16, 1207–1216 (2003).
  • Lenz EM, Bright J, Knight R, Wilson ID, Major H. Cyclosporin A-induced changes in endogenous metabolites in rat urine: a metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. J. Pharm. Biomed. Anal.35, 599–608 (2004).
  • Lenz EM, Bright J, Knight R, Wilson ID, Major H. A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity. Analyst129, 535–541 (2004).
  • Robertson DG, Reily MD, Baker JD. Metabonomics in pharmaceutical discovery and development. J. Proteome Res.6, 526–539 (2007).
  • Boros LG, Brackett DJ, Harrigan GG. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Curr. Cancer Drug Targets3, 447–455 (2003).
  • Yang J, Xu G, Zheng Y et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B813, 59–65 (2004).
  • Boros LG, Lerner MR, Morgan DL et al. [1,2–13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats. Pancreas31, 337–343 (2005).
  • Odunsi K, Wollman RM, Ambrosone CB et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int. J. Cancer113, 782–788 (2005).
  • Tsang TM, Woodman B, McLoughlin GA et al. Metabolic characterization of the R6/2 transgenic mouse model of Huntington’s disease by high-resolution MAS 1H NMR spectroscopy. J. Proteome Res.5, 483–492 (2006).
  • Constantinou MA, Papakonstantinou E, Spraul M et al.1H NMR-based metabonomics for the diagnosis of inborn errors of metabolism in urine. Anal. Chim. Acta542, 169–177 (2005).
  • Kuhara T. Gas chromatographic-mass spectrometric urinary metabolome analysis to study mutations of inborn errors of metabolism. Mass Spectrom. Rev.24, 814–827 (2005).
  • Robertson DG, Reily MD, Albassam M, Dethloff LA. Metabonomic assessment of vasculitis in rats. Cardiovasc. Toxicol.1, 7–19 (2001).
  • Slim RM, Robertson DG, Albassam M, Reily MD, Robosky L, Dethloff LA. Effect of dexamethasone on the metabonomics profile associated with phosphodiesterase inhibitor-induced vascular lesions in rats. Toxicol. Appl. Pharmacol.183, 108–116 (2002).
  • Mayr M, Mayr U, Chung YL, Yin X, Griffiths JR, Xu Q. Vascular proteomics: linking proteomic and metabolomic changes. Proteomics4, 3751–3761 (2004).
  • Mayr M, Chung YL, Mayr U et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol.25, 2135–2142 (2006).
  • Oostendorp M, Engelke UF, Willemsen MA, Wevers RA. Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clin. Chem.52, 1395–1405 (2006).
  • Marchesi JR, Holmes E, Khan F et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res.6, 546–551 (2007).
  • Maguire G, Lee P, Manheim D, Boros L. SiDMAP: a metabolomics approach to assess the effects of drug candidates on the dynamic properties of biochemical pathways. Expert Opin. Drug Discov.1, 351–359 (2006).
  • Harrigan GG, Colca J, Szalma S, Boros LG. PNU-91325 increases fatty acid synthesis from glucose and mitochondrial long chain fatty acid degradation: a comparative tracer-based metabolomics study with rosiglitazone and pioglitazone in HepG2 cells. Metabolomics2, 21–29 (2006).
  • Kacser H, Burns JA. The control of flux. Symp. Soc. Exp. Biol.27, 65–104 (1973).
  • Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur. J. Biochem.42, 97–105 (1974).
  • Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Less PW. Metabolic control analysis in drug discovery and disease. Nat. Biotechnol.20, 243–249 (2002).
  • de la Fuente A, Snoep JL, Westerhoff HV, Mendes P. Metabolic control in integrated biochemical systems. Eur. J. Biochem.269(18), 4399–4408 (2002).
  • Oliver SG. From genomes to systems: the path with yeast. Philos. Trans. R. Soc. Lond. B Biol. Sci.361, 477–482 (2006).
  • Kell DB. Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol.7, 296–307 (2004).
  • van der Greef J, Stroobant P, van der Heijden R. The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol.8, 559–565 (2004).
  • Orosz F, Vertessy BG, Hollan S, Horanyi M, Ovadi J. Triosephosphate isomerase deficiency: predictions and facts. J. Theor. Biol.182, 437–447 (1996).
  • Agius L. The physiological role of glucokinase binding and translocation in hepatocytes. Adv. Enzyme Regul.38, 303–331 (1998).
  • Mazat JP, Rossignol R, Malgat M, Rocher C, Faustin B, Letellier T. What do mitochondrial diseases teach us about normal mitochondrial functions...that we already knew: threshold expression of mitochondrial defects. Biochim. Biophys. Acta1504, 20–30 (2001).
  • Duesberg P, Rasnick D, Li R, Winters L, Rausch C, Hehlmann R. How aneuploidy may cause cancer and genetic instability. Anticancer Res.19, 4887–4906 (1999).
  • Rasnick D, Duesberg PH. How aneuploidy affects metabolic control and causes cancer. Biochem. J.340, 621–630 (1999).
  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R. Plant metabolomics: the missing link in functional genomics strategies. Plant Cell14, 1437–1440 (2002).
  • Nicholson JK, Wilson ID. Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov.2, 668–677 (2003).
  • Davidov E, Clish CB, Oresic M et al. Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. Omics8, 267–288 (2004).
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol.22, 245–252 (2004).
  • Griffin JL, Bonney SA, Mann C et al. An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. Physiol. Genomics17, 140–149 (2004).
  • Li Z, Chan C. Integrating gene expression and metabolic profiles. J. Biol. Chem.279, 27124–27137 (2004).
  • Oresic M, Clish CB, Davidov EJ et al. Phenotype characterisation using integrated gene transcript, protein and metabolite profiling. Appl. Bioinformatics3, 205–217 (2004).
  • Lelliott CJ, Lopez M, Curtis RK et al. Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB J.19, 1108–1119 (2005).
  • Laaksonen R, Katajamaa M, Paiva H et al. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PLoS ONE1, e97 (2006).
  • Yetukuri L, Katajamaa M, Medina-Gomez G, Seppanen-Laakso T, Vidal-Puig A, Oresic M. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol.1, 12 (2007).
  • Beecher C. Metabolomics: s new “omics” technology. American Genomics/Proteomics Technology May/June, 40–43 (2002).
  • Davidov EJ, Holland JM, Marple EW, Naylor S. Advancing drug discovery through systems biology. Drug Discov. Today8, 175–183 (2003).
  • Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat. Biotechnol.22, 1253–1259 (2004).
  • Ekins S, Nikolsky Y, Nikolskaya T. Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity. Trends Pharmacol. Sci.26, 202–209 (2005).
  • Mehrotra B. Mendes P. Bioinformatics approaches to integrate metabolomics and other systems biology data. In: Plant Metabolomics (Vol. 57). Saito K, Dixon RA, Willmitzer L (Eds). Springer-Verlag, Berlin, Heidelberg, Germany 105–115 (2006).
  • Bilello JA. The agony and ecstasy of “omic” technologies in drug development. Curr. Mol. Med.5, 39–52 (2005).
  • Fischer HP. Towards quantitative biology: integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev.11, 1–68 (2005).
  • Kitano H. Computational systems biology. Nature420, 206–210 (2002).
  • Peri S, Navarro JD, Amanchy R et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res.13, 2363–2371 (2003).
  • Tong W, Cao X, Harris S et al. ArrayTrack–supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environ. Health Perspect.111, 1819–1826 (2003).
  • Lee V, Camon E, Dimmer E, Barrell D, Apweiler R. Who tangos with GOA? – Use of Gene Ontology Annotation (GOA) for biological interpretation of ‘-omics’ data and for validation of automatic annotation tools. In Silico Biol.5, 5–8 (2004).
  • Yang Y, Engin L, Wurtele ES, Cruz-Neira C, Dickerson JA. Integration of metabolic networks and gene expression in virtual reality. Bioinformatics21, 3645–3650 (2005).
  • Ekins S, Kirillov E, Rakhmatulin EA, Nikolskaya T. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism. Drug Metab. Dispos.33, 474–481 (2005).
  • Ekins S, Bugrim A, Brovold L et al. Algorithms for network analysis in systems – ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica36, 877–901 (2006).
  • Kolpakov F, Poroikov V, Sharipov R et al. CYCLONET– an integrated database on cell cycle regulation and carcinogenesis. Nucleic Acids Res.35, D550–D556 (2007).
  • van der Greef J, Martin S, Juhasz P et al. The art and practice of systems biology in medicine: mapping patterns of relationships. J. Proteome Res.6(4), 1540–1559(2007).
  • Clish CB, Davidov E, Oresic M et al. Integrative biological analysis of the APOE*3-Leiden transgenic mouse. Omics8, 3–13 (2004).
  • Coen M, Ruepp SU, Lindon JC et al. Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J. Pharm. Biomed. Anal.35, 93–105 (2004).
  • Kleno TG, Kiehr B, Baunsgaard D, Sidelmann UG. Combination of ‘omics’ data to investigate the mechanism(s) of hydrazine-induced hepatotoxicity in rats and to identify potential biomarkers. Biomarkers9, 116–138 (2004).
  • Prabakaran S, Swatton JE, Ryan MM et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry9, 684–697 (2004).
  • Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol.19, 45–50 (2001).
  • Wang Y, Holmes E, Nicholson JK et al. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc. Natl Acad. Sci. USA101, 12676–12681 (2004).
  • Dumas M-E, Barton RH, Toye A et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl Acad. Sci. USA103, 12511–12516 (2006).
  • van der Greef J. Systems biology, connectivity and the future of medicine. Syst. Biol. (Stevenage)152, 174–178 (2005).
  • Nebert DW, Vesell ES. Can personalized drug therapy be achieved? A closer look at pharmaco-metabonomics. Trends Pharmacol. Sci.27, 580–586 (2006).
  • Schnackenberg LK, Beger RD. Monitoring the health to disease continuum with global metabolic profiling and systems biology. Pharmacogenomics7, 1077–1086 (2006).
  • van der Greef J, Hankemeier T, McBurney RN. Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics7, 1087–1094 (2006).
  • Nebert DW, Jorge-Nebert L, Vesell ES. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am. J. Pharmacogenomics3, 361–370 (2003).
  • Nebert DW, Vesell ES. Advances in pharmacogenomics and individualized drug therapy: exciting challenges that lie ahead. Eur. J. Pharmacol.500, 267–280 (2005).
  • Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett.484, 169–174 (2000).
  • Bundy JG, Spurgeon DJ, Svendsen C et al. Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Lett.521, 115–120 (2002).
  • Clayton TA, Lindon JC, Cloarec O et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature440, 1073–1077 (2006).
  • Schnackenberg LK, Dragan YP, Reily MD, Robertson DG, Beger RD. Evaluation of NMR spectral data of urine in conjunction with measured clinical chemistry and histopathology parameters to assess the effects of liver and kidney toxicants. Metabolomics (2007) (Epub ahead of print).
  • Lenz EM, Bright J, Wilson ID, Morgan SR, Nash AF. A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J. Pharm. Biomed. Anal.33, 1103–1115 (2003).
  • Lenz EM, Bright J, Wilson ID et al. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J. Pharm. Biomed. Anal.36, 841–849 (2004).
  • Holmes E, Loo RL, Cloarec O et al. Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal. Chem.79, 2629–2640 (2007).
  • Teahan O, Gamble S, Holmes E et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem.78, 4307–4318 (2006).
  • Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal. Chem.79, 1181–1186 (2007).
  • Kussmann M, Raymond F, Affolter M. Omics-driven biomarker discovery in nutrition and health. J. Biotechnol.124, 758–787 (2006).
  • Wishart DS, Tzur D, Knox C et al. HMDB: the Human Metabolome Database. Nucleic Acids Res.35, D521–D526 (2007).
  • Lay JO, Borgmann S, Liyanage R, Wilkins CL. Problems with the “omics”. Trends Anal. Chem.25, 1046–1056 (2006).
  • Brazma A, Hingamp P, Quackenbush J et al. Minimum Information About a Microarray Experiment (MIAME) – toward standards for microarray data. Nat. Genet.29, 365–371 (2001).
  • Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A. The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol. Cell Proteomics3, 531–533 (2004).
  • Beger RD. Cambridge Healthtech Institute’s 7th annual, identifying and validating metabolic markers for drug development and clinical studies. Expert Rev. Mol. Diagn.7, 113–115 (2007).

Websites

  • The Health Systems Institute at the Georgia Institute of Technology www.hsi.gatech.edu
  • Innovation/Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products www.fda.gov/oc/initiatives/criticalpath/whitepaper.pdf
  • Critical Path Institute www.c-path.org
  • The Metabolomics Standards Initiative (MSI) http://msi-workgroups.sourceforge.net

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.