92
Views
12
CrossRef citations to date
0
Altmetric
Review

Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management

Pages 269-280 | Published online: 09 Jan 2014

References

  • Loprinzi C, Thome SD. Understanding the utility of adjuvant systematic therapy for primary breast cancer. J. Clin. Oncol.19, 972–979 (2001).
  • Fitzgibbons PL, Page Dl, Weaver D et al. Prognostic factors in breast cancer: College of American Pathologists consensus statement 1999. Arch. Pathol. Lab. Med.124, 966–978 (2000).
  • Goldhirsch A, Glick JH, Gelber RD et al. Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann. Oncol.16, 1569–1583 (2005).
  • Cianfrocca M, Goldstein LJ. Prognostic and predictive factors in early-stage breast cancer. Oncologist9, 606–616 (2004).
  • Esteva FJ, Hortobagyi GN. Prognostic molecular markers in early breast cancer. Breast Cancer Res.6(3), 109–118 (2004).
  • Yamashita H, Nishio M, Toyama T et al. Coexistence of Her-2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res.6, R24–R30 (2004).
  • Duffy MJ. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin. Chem.48, 1194–1197 (2002).
  • Shinozaki M, Hoon DS, Giuliano AE et al. Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin. Cancer Res.11(6), 2156–2162 (2005).
  • Takahashi Y, Miyoshi Y, Takahata C et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res.11(4), 1380–1385 (2005).
  • Zhang Z, Yamashita H, Toyama T et al. NCOR1 mRNA is an independent prognostic factor for breast cancer. Cancer Lett.237(1), 123–129 (2006).
  • Watkins G, Douglas-Jones A, Bryce R, Mansel RE, Jiang WG. Increased levels of SPARC (osteonectin) in human breast cancer tissues and its association with clinical outcomes. Prostaglandins Leukot. Essent. Fatty Acids72(4), 267–272 (2005).
  • Davies MP, O’Neill PA, Innes H et al. Correlation of mRNA for oestrogen receptor β splice variants ERβ1, ERβ2/ERβcx and ERβ5 with outcome in endocrine-treated breast cancer. J. Mol. Endocrinol.33(3), 773–782 (2004).
  • Chotteau-Lelievre A, Revillion F, Lhotellier V et al. Prognostic value of ERM gene expression in human primary breast cancers. Clin. Cancer Res.10(21), 7297–7303 (2004).
  • Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumors. Nature406(6797), 747–752 (2000).
  • Sorlie T, Perou CM, Tibshirani R et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98(19), 10869–10874 (2001).
  • West M, Blanchette C, Dressman H et al. Predicting the clinical status of human breast cancer by gene expression profiles. Proc. Natl Acad. Sci. USA98(20), 11462–11467 (2001).
  • Sorlie T, Tibshirani R, Parker J et al. Repeated observations of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100(14), 8418–8423 (2003).
  • Sotiriou C, Neo SY, McShane LM et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA100(18), 10393–10398 (2003).
  • van’t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415(6871), 530–536 (2002).
  • van de Vijver MJ, Hem YD, van’t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N. Eng. J. Med.347(25), 1999–2009 (2002).
  • van de Rijn M, Perou CM, Tibshirani R et al. Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am. J. Pathol.161(6), 1991–1996 (2002).
  • Nielson TO, Hsu, FD, Jensen K et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast cancer. Clin. Cancer Res.10(16), 5367–5374 (2004).
  • Sorlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur. J. Cancer40(18), 2667–2675 (2004).
  • Gruvberger S, Ringner M, Chen Y et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res.61(16), 5979–5984 (2001).
  • Pusztai L, Ayers M, Stec J, Clark E et al. Gene expression profiles obtained from fine-needle aspirations of breast cancer reliably identify routine prognostic markers and reveal large-scale molecular differences between estrogen-negative and estrogen-positive tumors. Clin. Cancer Res.9(7), 2406–2415 (2003).
  • Miller DV, Leontovich AA, Lingle WL et al. Utilizing Nottingham Prognostic Index in microarray gene expression profiling of breast carcinomas. Mod. Pathol.17(7), 756–764 (2004).
  • Yu K, Lee CH, Tan PH et al. A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res.64(9), 2962–2968 (2004).
  • Sotiriou C, Wirapati P, Loi S et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J. Natl Cancer Instit.98(4), 262–272 (2006).
  • Canales RD, Luo Y, Willey JC et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol.24(9), 1115–1122 (2006).
  • Glas Am, Floore A, Delahaye L et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics7, 278 (2006).
  • Buyse M, Loi S, van’t Veer L et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J. Natl Cancer Instit.98(17), 1183–1192 (2006).
  • Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351(27), 2817–2826 (2004).
  • Esteva FJ, Sahin AA, Cristofanilli M et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy. Clin. Cancer Res.11(9), 3315–3319 (2005).
  • Cobleigh MA, Tabesh B, Bitterman P et al. Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin. Cancer Res.11(24), 8623–8631 (2005).
  • Habel LA, Shak S, Jacobs MK et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res.8(3), R25 (2006).
  • Kaklamini V. A genetic signature can predict prognosis and response to therapy in breast cancer. Expert Rev. Mol. Diagn.6(6), 803–806 (2006).
  • Ma X-J, Wang Z, Ryan PD et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell5, 607–616 (2004).
  • Reid JF, Lusa L, De Cocco L et al. Limits of predictive models using microarray data for breast cancer clinical treatment outcome. J. Natl Cancer Instit.97(12) 927–930 (2005).
  • Jansen M, Foekens JA, Klijn J, Berns E. Re: limits of predictive models using microarray data for breast cancer clinical treatment outcome. J. Natl Cancer Instit.97(24) 1851–1853 (2005).
  • Goetz MP, Suman VJ, Ingle JN et al. A two gene expression ratio of homeobox13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin. Cancer Res.12(7), 2080–2087 (2006).
  • Ma X-J, Hilsenbeck SG, Wang W et al. The HoxB13:IL17BR expression index is a prognostic factor in early stage breast cancer. J. Clin. Oncol.24(28), 4611–4619 (2006).
  • Jacquemier J, Ginestier C, Rougemont J et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res.65(3), 767–779 (2005).
  • Makretsov NA, Huntsman DG, Nielsen TO et al. Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin. Cancer Res.10(18 Pt 1), 6143–6151 (2004).
  • Ring BZ, Seitz RS, Beck R et al. Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J. Clin. Oncol.24(19), 3039–3047 (2006).
  • Whitehead CM, Nelson R, Hudson R et al. Selection and utility of a panel of early stage breast cancer prognostic molecular markers. Mod. Pathol.18(Suppl 1), 55A (2005).
  • Ross JS, Boguniewicz AB, Ross MS et al. Predicting prognosis in early stage primary breast cancer using a five biomarker panel and image assisted immunohistochemistry (IHC) scoring. Breast Cancer Res. Treat.94(Suppl. 1), 3019A (2005).
  • Davol PA, Bagdasaryan R, Elfenbein GJ, Maizel AL, Frackelton AR Jr. Shc proteins are strong, independent prognostic markers for both node-negative and node-positive primary breast cancer. Cancer Res.63(20), 6772–6783 (2003).
  • Frackelton AR Jr, Lu L, Davol PA, Bagdasaryan R, Hafer LJ, Sgroi DC. p66 Shc and tyrosine-phosphorylated Shc in primary breast tumors identify patients likely to relapse despite tamoxifen therapy. Breast Cancer Res.8(6), R73 (2006).
  • Backus J, Laughlin T, Wang Y et al. Identification and characterization of optimal gene expression markers for detection of breast cancer. J. Mol. Diagn.7(3), 327–336 (2005).
  • Nissan A, Jager D, Roystacher M et al. Multimarker RT-PCR assay for the detection of minimal residual disease in sentinel lymph nodes of breast cancer patients. Br. J. Cancer94(5), 681–685 (2006).
  • van Diest PJ, van der Wall E, Baak JPA. Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol.57(7), 675–681 (2004).
  • Shen R, Ghosh D, Chinnaiyan AM. Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data. BMC Genomics5(1), 94 (2004).
  • Milyavsky M, Tabach Y, Shats I et al. Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res.65(11), 4530–4543 (2005).
  • Fritz P, Cabrera CM, Dippon J et al. c-erbB2 and topoisomerase IIα protein expression independently predict poor survival in primary human breast cancer: a retrospective study. Breast Cancer Res.7, R374–R384 (2005).
  • Gonzalez MA, Pinder SE, Callagy G et al. Minichromosome maintenance protein 2 is a strong independent prognostic marker in breast cancer. J. Clin. Oncol.21(23), 4306–4313 (2003).
  • Gonzalez MA, Tachibana KE, Chin SF et al. Geminin predicts adverse clinical outcome in breast cancer by reflecting cell-cycle progression. J. Pathol.204(2), 121–130 (2004).
  • Rudolph P, Kuhling H, Alm P et al. Differential prognostic impact of the cyclins E and B in premenopausal and postmenopausal women with lymph node-negative breast cancer. Int. J. Cancer105(5), 674–680 (2003).
  • Kuhling H, Alm P, Olsson H et al. Expression of cyclins E, A, and B, and prognosis in lymph node-negative breast cancer. J. Pathol.199(4), 424–431 (2003).
  • Winters ZE, Hunt NC, Bradburn MJ et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur. J. Cancer37(18), 2405–2412 (2001).
  • Xia W, Chen J-S, Zhou X et al. Phosphorylation/cytoplasmic localization of p21 Cip1/Waf1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin. Cancer Res.10(11), 3815–3824 (2004).
  • Viglietto G, Motti ML, Bruni P et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med.8(10), 1136–1144 (2002).
  • Liang J, Zubovitz J, Petrocelli T et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med.8(10), 1153–1160 (2002).
  • Daidone MG, Silvestrini R. Prognostic and predictive role of proliferation indices in adjuvant therapy of breast cancer. J. Natl Cancer Inst. Monogr.30, 27–35 (2001).
  • Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest.115(6), 1503–1521 (2005).
  • Dressler LG, Berry DA, Broadwater G et al. Comparison of HER2 status by fluorescence in situ hybridization and immunochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J. Clin. Oncol.23(19), 4287–4297 (2005).
  • Ayers M, Symmans WF, Stec J et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin and cyclophosphamide chemotherapy in breast cancer. J. Clin. Oncol.22(12), 2284–2293 (2004).
  • Iwao-Koizumi K, Matoba R, Ueno N et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J. Clin. Oncol.23(3), 422–431 (2005).
  • Chang JC, Wooten EC, Tsimelzon A et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J. Clin. Oncol.23(6), 1169–1177 (2005).
  • Jansen MP, Foekens JA, van Staveren IL et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J. Clin. Oncol.23(4), 732–740 (2005).
  • Hannemann J, Oosterkamp HM, Bosch CAJ et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol.23(15), 3331–3342 (2005).
  • Modlich O, Prisack HB, Munnes M, Audretsch W, Bojar H. Predictors of primary breast cancers responsiveness to preoperative epirubicin/cyclophosphamide-based chemotherapy: translation of microarray data into clinically useful predictive signatures. J. Transl. Med.3(1), 32 (2005).
  • Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin. Cancer Res.11(16), 5678–5685 (2005).
  • Rouzier R, Rajan R, Wagner P et al. Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc. Natl Acad. Sci. USA102(23), 8315–8320 (2005).
  • Gianni L, Zambetti M, Clark K et al. Gene expression profiles in a paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J. Clin. Oncol.23(29), 7265–7277 (2005).
  • Paik S, Tang G, Shak S et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol.24(23), 3726–3734 (2006).
  • Fan C, Oh DS, Wessels L et al. Concordance among gene-expression based predictors for breast cancer. N. Engl. J. Med.355(6), 560–569 (2006).
  • Massague J. Sorting our breast-cancer gene signatures. N. Engl. J. Med.356(3), 294–297 (2007).
  • Bast RC, Lilja H, Urban N et al. Translational crossroads for biomarkers. Clin. Cancer Res.11(17), 6103–6108 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.