111
Views
22
CrossRef citations to date
0
Altmetric
Review

Cerebrospinal fluid: identification of diagnostic markers for schizophrenia

&
Pages 209-216 | Published online: 09 Jan 2014

References

  • Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J. Psychiatry160(1), 13–23 (2003).
  • Mason P, Harrison G, Glazebrook C et al. Characteristics of outcome in schizophrenia at 13 years. Br. J. Psychiatry167(5), 596–603 (1995).
  • Larsen TK, Johannessen JO, Opjordsmoen S. First-episode schizophrenia with long duration of untreated psychosis. Pathways to care. Br. J. Psychiatry172(33), 45–52 (1998).
  • Cardno AG, Gottesman II. Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am. J. Med. Genet.97(1), 12–17 (2000).
  • Stefansson H, Sigurdsson E, Steinthorsdottir V et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet.71(4), 877–892 (2002).
  • Huang JT, McKenna T, Hughes C et al. CSF biomarker discovery using label-free nano-LC-MS based proteomic profiling: technical aspects. J. Sep. Sci.30(2), 214–225 (2007).
  • Seehusen DA, Reeves MM, Fomin DA. Cerebrospinal fluid analysis. Am. Fam. Physician.68(6), 1103–1108 (2003).
  • Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microsc. Res. Tech.60(6), 614–632 (2003).
  • Schmitt A, Bertsch T, Henning U et al. Increased serum S100B in elderly, chronic schizophrenic patients: negative correlation with deficit symptoms. Schizophr. Res.80(2–3), 305–313 (2005).
  • Lara DR, Gama CS, Belmonte-de-Abreu P et al. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J. Psychiatr. Res.35(1), 11–14 (2001).
  • Rothermundt M, Missler U, Arolt V et al. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol. Psychiatry6(4), 445–449 (2001).
  • Rothermundt M, Ponath G, Arolt V. S100B in schizophrenic psychosis. Int. Rev. Neurobiol.59, 445–470 (2004).
  • Rothermundt M, Falkai P, Ponath G et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol. Psychiatry9(10), 897–899 (2004).
  • Schroeter ML, Abdul-Khaliq H, Fruhauf S et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr. Res.62(3), 231–236 (2003).
  • Wiesmann M, Wandinger KP, Missler U et al. Elevated plasma levels of S-100b protein in schizophrenic patients. Biol. Psychiatry45(11), 1508–1511 (1999).
  • Gattaz WF, Lara DR, Elkis H et al. Decreased S100-β protein in schizophrenia: preliminary evidence. Schizophr. Res.43(2–3), 91–95 (2000).
  • Fano G, Biocca S, Fulle S et al. The S-100: a protein family in search of a function. Prog. Neurobiol.46(1), 71–82 (1995).
  • Benes FM. Evidence for neurodevelopment disturbances in anterior cingulate cortex of post-mortem schizophrenic brain. Schizophr. Res.5(3), 187–188 (1991).
  • Lewis DA. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Rev.31(2–3), 270–276 (2000).
  • Lewis DA, Cruz DA, Melchitzky DS, Pierri JN. Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am. J. Psychiatry158(9), 1411–1422 (2001).
  • Thune JJ, Pakkenberg B. Stereological studies of the schizophrenic brain. Brain Res. Rev.31(2–3), 200–204 (2000).
  • Clark D, Dedova I, Cordwell S, Matsumoto I. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol. Psychiatry11(5), 459–470, 423 (2006).
  • Halim ND, Weickert CS, McClintock BW et al. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol. Psychiatry8(9), 797–810 (2003).
  • Steiner J, Bielau H, Bernstein HG, Bogerts B, Wunderlich MT. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J. Neurol. Neurosurg. Psychiatry77(11), 1284–1287 (2006).
  • Buttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W. S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke28(10), 1961–1965 (1997).
  • Fassbender K, Schmidt R, Schreiner A et al. Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J. Neurol. Sci.148(1), 101–105 (1997).
  • Griffin WS, Yeralan O, Sheng JG et al. Overexpression of the neurotrophic cytokine S100 β in human temporal lobe epilepsy. J. Neurochem.65(1), 228–233 (1995).
  • McKeating EG, Andrews PJ, Mascia L. Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury. Acta Neurochir. Suppl.71, 117–119 (1998).
  • Raabe A, Menon DK, Gupta S, Czosnyka M, Pickard JD. Jugular venous and arterial concentrations of serum S-100B protein in patients with severe head injury: a pilot study. J. Neurol. Neurosurg. Psychiatry65(6), 930–932 (1998).
  • Van Eldik LJ, Griffin WS. S100 β expression in Alzheimer’s disease: relation to neuropathology in brain regions. Biochim. Biophys. Acta1223(3), 398–403 (1994).
  • Hayakata T, Shiozaki T, Tasaki O et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock22(2), 102–107 (2004).
  • Paradisi A, Guidi B, Diociaiuti A et al. Increased S100B protein serum levels in psoriasis. J. Dermatol. Sci.48(2), 148–150 (2007).
  • Piazza O, Russo E, Cotena S, Esposito G, Tufano R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J. Anaesth.99(4), 518–521 (2007).
  • Andreazza AC, Cassini C, Rosa AR et al. Serum S100B and antioxidant enzymes in bipolar patients. J. Psychiatr. Res.41(6), 523–529 (2007).
  • Unden J, Bellner J, Eneroth M et al. Raised serum S100B levels after acute bone fractures without cerebral injury. J. Trauma58(1), 59–61 (2005).
  • Thompson PM, Kelley M, Yao J, Tsai G, van Kammen DP. Elevated cerebrospinal fluid SNAP-25 in schizophrenia. Biol. Psychiatry53(12), 1132–1137 (2003).
  • Thompson PM, Rosenberger C, Qualls C. CSF SNAP-25 in schizophrenia and bipolar illness. A pilot study. Neuropsychopharmacology21(6), 717–722 (1999).
  • Gabriel SM, Haroutunian V, Powchik P et al. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch. Gen. Psychiatry54(6), 559–566 (1997).
  • Karson CN, Mrak RE, Schluterman KO et al. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol. Psychiatry4(1), 39–45 (1999).
  • Sokolov BP, Tcherepanov AA, Haroutunian V, Davis KL. Levels of mRNAs encoding synaptic vesicle and synaptic plasma membrane proteins in the temporal cortex of elderly schizophrenic patients. Biol. Psychiatry48(3), 184–196 (2000).
  • Thompson PM, Sower AC, Perrone-Bizzozero NI. Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biol. Psychiatry43(4), 239–243 (1998).
  • Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport12(15), 3257–3262 (2001).
  • Young CE, Arima K, Xie J et al. SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb. Cortex8(3), 261–268 (1998).
  • Muller DJ, Klempan TA, De Luca V et al. The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci. Lett.379(2), 81–89 (2005).
  • Bronk P, Deak F, Wilson MC et al. Differential effects of SNAP-25 deletion on Ca2+-dependent and Ca2+-independent neurotransmission. J. Neurophysiol.98(2), 794–806 (2007).
  • Bajjalieh SM, Scheller RH. The biochemistry of neurotransmitter secretion. J. Biol. Chem.270(5), 1971–1974 (1995).
  • Hodel A. Snap-25. Int. J. Biochem. Cell Biol.30(10), 1069–1073 (1998).
  • Oyler GA, Higgins GA, Hart RA et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell Biol.109(6 Pt 1), 3039–3052 (1989).
  • Di Forti M, Lappin JM, Murray RM. Risk factors for schizophrenia – all roads lead to dopamine. Eur. Neuropsychopharmacol.17(Suppl. 2), S101–S107 (2007).
  • Nadri C, Dean B, Scarr E, Agam G. GSK-3 parameters in postmortem frontal cortex and hippocampus of schizophrenic patients. Schizophr. Res.71(2–3), 377–382 (2004).
  • Kozlovsky N, Nadri C, Agam G. Low GSK-3β in schizophrenia as a consequence of neurodevelopmental insult. Eur. Neuropsychopharmacol.15(1), 1–11 (2005).
  • Kozlovsky N, Regenold WT, Levine J et al. GSK-3β in cerebrospinal fluid of schizophrenia patients. J. Neural Transm.111(8), 1093–1098 (2004).
  • Nadri C, Lipska BK, Kozlovsky N et al. Glycogen synthase kinase (GSK)-3β levels and activity in a neurodevelopmental rat model of schizophrenia. Brain Res. Dev. Brain Res.141(1–2), 33–37 (2003).
  • Kozlovsky N, Belmaker RH, Agam G. Low GSK-3β immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am. J. Psychiatry157(5), 831–833 (2000).
  • Kozlovsky N, Belmaker RH, Agam G. Low GSK-3 activity in frontal cortex of schizophrenic patients. Schizophr. Res.52(1–2), 101–105 (2001).
  • Zhao Z, Ksiezak-Reding H, Riggio S, Haroutunian V, Pasinetti GM. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr. Res.84(1), 1–14 (2006).
  • Alimohamad H, Rajakumar N, Seah YH, Rushlow W. Antipsychotics alter the protein expression levels of β-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol. Psychiatry57(5), 533–542 (2005).
  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat. Genet.36(2), 131–137 (2004).
  • Kozlovsky N, Nadri C, Belmaker RH, Agam G. Lack of effect of mood stabilizers or neuroleptics on GSK-3 protein levels and GSK-3 activity. Int. J. Neuropsychopharmacol.6(2), 117–120 (2003).
  • Roh MS, Seo MS, Kim Y et al. Haloperidol and clozapine differentially regulate signals upstream of glycogen synthase kinase 3 in the rat frontal cortex. Exp. Mol. Med.39(3), 353–360 (2007).
  • Nadri C, Kozlovsky N, Agam G, Bersudsky Y. GSK-3 parameters in lymphocytes of schizophrenic patients. Psychiatry Res.112(1), 51–57 (2002).
  • Wan C, Yang Y, Li H et al. Dysregulation of retinoid transporters expression in body fluids of schizophrenia patients. J. Proteome Res.5(11), 3213–3216 (2006).
  • Huang JT, Leweke FM, Oxley D et al. Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis. PLoS Med.3(11), e428 (2006).
  • Chen ML, Chen CH. Comparative proteome analysis revealed up-regulation of transthyretin in rat brain under chronic clozapine treatment. J. Psychiatr. Res.41(1–2), 63–68 (2007).
  • Morley JE, Shafer RB. Thyroid function screening in new psychiatric admissions. Arch. Intern. Med.142(3), 591–593 (1982).
  • Ryan WG, Roddam RF, Grizzle WE. Thyroid function screening in newly admitted psychiatric inpatients. Ann. Clin. Psychiatry6(1), 7–12 (1994).
  • Kirkegaard C, Faber J. The role of thyroid hormones in depression. Eur. J. Endocrinol.138(1), 1–9 (1998).
  • Sullivan GM, Hatterer JA, Herbert J et al. Low levels of transthyretin in the CSF of depressed patients. Am. J. Psychiatry156(5), 710–715 (1999).
  • Sullivan GM, Mann JJ, Oquendo MA et al. Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol. Psychiatry60(5), 500–506 (2006).
  • Hall RCW, Stickney S, Beresford TP. Endocrine disease and behavior. Integr. Psychiatry4, 122–135 (1986).
  • Wetterberg L, Nybom R, Bratlid T et al. Micrometer-sized particles in cerebrospinal fluid (CSF) in patients with schizophrenia. Neurosci. Lett.329(1), 91–95 (2002).
  • Do KQ, Lauer CJ, Schreiber W et al. γ-glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J. Neurochem.65(6), 2652–2662 (1995).
  • Holmes E, Tsang TM, Huang JT et al. Metabolic profiling of CSF: evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med.3(8), e327 (2006).
  • Huang JT, Leweke FM, Tsang TM et al. CSF metabolic and proteomic profiles in patients prodromal for psychosis. PLoS ONE2(1), e756 (2007).
  • Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry148(10), 1301–1308 (1991).
  • Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatry52(12), 998–1007 (1995).
  • Tamminga CA. Schizophrenia and glutamatergic transmission. Crit. Rev. Neurobiol.12(1–2), 21–36 (1998).
  • Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry158(9), 1367–1377 (2001).
  • Hashimoto K, Okamura N, Shimizu E, Iyo M. Glutamate hypothesis of schizophrenia and approach for possible therapeutic drugs. Curr. Med. Chem. CNS Agents4, 147–154 (2004).
  • Hashimoto K, Shimizu E, Iyo M. Dysfunction of glia–neuron communication in pathophysiology of schizophrenia. Curr. Psychiatry Rev.1, 151–163 (2005).
  • Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am. J. Psychiatry157(11), 1738–1751 (2000).
  • Morita Y, Ujike H, Tanaka Y et al. A genetic variant of the serine racemase gene is associated with schizophrenia. Biol. Psychiatry61(10), 1200–1203 (2007).
  • Steffek AE, Haroutunian V, Meador-Woodruff JH. Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport17(11), 1181–1185 (2006).
  • Verrall L, Walker M, Rawlings N et al.D-amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur. J. Neurosci.26(6), 1657–1669 (2007).
  • Chumakov I, Blumenfeld M, Guerassimenko O et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc. Natl Acad. Sci. USA99(21), 13675–13680 (2002).
  • Heresco-Levy U, Javitt DC, Ebstein R et al.D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry57(6), 577–585 (2005).
  • Javitt DC. Glutamate as a therapeutic target in psychiatric disorders. Mol. Psychiatry9(11), 984–997, 979 (2004).
  • Tsai G, Yang P, Chung LC, Lange N, Coyle JT. D-serine added to antipsychotics for the treatment of schizophrenia. Biol. Psychiatry44(11), 1081–1089 (1998).
  • Hashimoto K, Fukushima T, Shimizu E et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch. Gen. Psychiatry60(6), 572–576 (2003).
  • Hashimoto K, Engberg G, Shimizu E et al. Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry29(5), 767–769 (2005).
  • Bendikov I, Nadri C, Amar S et al. A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr. Res.90(1–3), 41–51 (2007).
  • Levin Y, Schwarz E, Wang L, Leweke FM, Bahn S. Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J. Sep. Sci.30(14), 2198–2203 (2007).
  • Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S. Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol. Psychiatry9(2), 128–143 (2004).
  • Yuan X, Desiderio DM. Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics5(2), 541–550 (2005).
  • Yuan X, Russell T, Wood G, Desiderio DM. Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis23(7–8), 1185–1196 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.