139
Views
13
CrossRef citations to date
0
Altmetric
Review

The fumaric acid ester BG-12: a new option in MS therapy

, , &
Pages 951-958 | Published online: 09 Jan 2014

References

  • Schweckendieck W. Treatment of psoriasis vulgaris. Med. Monatsschr. 13, 103–104 (1959).
  • Nast A, Boehncke WH, Mrowietz U et al.; Deutsche Dermatologische Gesellschaft; Berufsverband Deutscher Dermatologen. German S3-guidelines on the treatment of psoriasis vulgaris (short version). Arch. Dermatol. Res. 304(2), 87–113 (2012).
  • Reich K, Thaci D, Mrowietz U, Kamps A, Neureither M, Luger T. Efficacy and safety of fumaric acid esters in the long-term treatment of psoriasis–a retrospective study (FUTURE). J. Dtsch. Dermatol. Ges. 7(7), 603–611 (2009).
  • Cohen BA, Rieckmann P. Emerging oral therapies for multiple sclerosis. Int. J. Clin. Pract. 61(11), 1922–1930 (2007).
  • Lassaigne. Ann. Chim. Phys. 11, 93 (1819).
  • Litjens NH, Burggraaf J, van Strijen E et al. Pharmacokinetics of oral fumarates in healthy subjects. Br. J. Clin. Pharmacol. 58(4), 429–432 (2004).
  • Rostami-Yazdi M, Clement B, Mrowietz U. Pharmacokinetics of anti-psoriatic fumaric acid esters in psoriasis patients. Arch. Dermatol. Res. 302(7), 531–538 (2010).
  • Litjens NH, van Strijen E, van Gulpen C et al. In vitro pharmacokinetics of anti-psoriatic fumaric acid esters. BMC Pharmacol. 4, 22 (2004).
  • Nibbering PH, Thio B, Zomerdijk TP, Bezemer AC, Beijersbergen RL, van Furth R. Effects of monomethylfumarate on human granulocytes. J. Invest. Dermatol. 101(1), 37–42 (1993).
  • Werdenberg D, Joshi R, Wolffram S, Merkle HP, Langguth P. Presystemic metabolism and intestinal absorption of antipsoriatic fumaric acid esters. Biopharm. Drug Dispos. 24(6), 259–273 (2003).
  • Itoh K, Wakabayashi N, Katoh Y et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13(1), 76–86 (1999).
  • Satoh T, Okamoto SI, Cui J et al. Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc. Natl. Acad. Sci. U.S.A. 103(3), 768–773 (2006).
  • Satoh T, Harada N, Hosoya T, Tohyama K, Yamamoto M, Itoh K. Keap1/Nrf2 system regulates neuronal survival as revealed through study of keap1 gene-knockout mice. Biochem. Biophys. Res. Commun. 380(2), 298–302 (2009).
  • Wakabayashi N, Itoh K, Wakabayashi J et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35(3), 238–245 (2003).
  • Chen PC, Vargas MR, Pani AK et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc. Natl. Acad. Sci. U.S.A. 106(8), 2933–2938 (2009).
  • Duffy S, So A, Murphy TH. Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J. Neurochem. 71(1), 69–77 (1998).
  • Ellrichmann G, Petrasch-Parwez E, Lee DH et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS ONE 6(1), e16172 (2011).
  • Hubbs AF, Benkovic SA, Miller DB et al. Vacuolar leukoencephalopathy with widespread astrogliosis in mice lacking transcription factor Nrf2. Am. J. Pathol. 170(6), 2068–2076 (2007).
  • Khodagholi F, Eftekharzadeh B, Maghsoudi N, Rezaei PF. Chitosan prevents oxidative stress-induced amyloid beta formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-kappaB. Mol. Cell. Biochem. 337(1-2), 39–51 (2010).
  • Kim YS, Podder B, Song HY. Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway. Biol. Pharm. Bull. 36(5), 802–811 (2013).
  • Kraft AD, Johnson DA, Johnson JA. Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J. Neurosci. 24(5), 1101–1112 (2004).
  • Lee JM, Calkins MJ, Chan K, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 278(14), 12029–12038 (2003).
  • Lewerenz J, Albrecht P, Tien ML et al. Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone in vitro. J. Neurochem. 111(2), 332–343 (2009).
  • Liu Y, Kern JT, Walker JR, Johnson JA, Schultz PG, Luesch H. A genomic screen for activators of the antioxidant response element. Proc. Natl. Acad. Sci. USA. 104(12), 5205–5210 (2007).
  • Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, Freeman ML. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol. 21(3), 705–710 (2008).
  • Sasaki S, Tozawa T, Sugamoto K, Matsushita YI, Satoh T. A novel di terpene para-hydroquinone compound derived from cryptoquinone protects neuronal cells against oxidative stress and activates the Nrf2/ARE pathway. Neurosci. Lett. (2013).
  • Scannevin RH, Chollate S, Jung MY et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J. Pharmacol. Exp. Ther. 341(1), 274–284 (2012).
  • Schilling S, Goelz S, Linker R, Luehder F, Gold R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin. Exp. Immunol. 145(1), 101–107 (2006).
  • Stewart D, Killeen E, Naquin R, Alam S, Alam J. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. Chem. 278(4), 2396–2402 (2003).
  • Su JY, Duffy S, Murphy TH. Reduction of H2O2-evoked, intracellular calcium increases in the rat N18-RE-105 neuronal cell line by pretreatment with an electrophilic antioxidant inducer. Neurosci. Lett. 273(2), 109–112 (1999).
  • Tabrizi SJ, Workman J, Hart PE et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47(1), 80–86 (2000).
  • Thiessen A, Schmidt MM, Dringen R. Fumaric acid dialkyl esters deprive cultured rat oligodendroglial cells of glutathione and upregulate the expression of heme oxygenase 1. Neurosci. Lett. 475(1), 56–60 (2010).
  • Yang L, Calingasan NY, Thomas B et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS ONE 4(6), e5757 (2009).
  • Yu M, Xu M, Liu Y et al. Nrf2/ARE is the potential pathway to protect Sprague-Dawley rats against oxidative stress induced by quinocetone. Regul. Toxicol. Pharmacol. 66(3), 279–285 (2013).
  • Linker RA, Lee DH, Ryan S et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134(Pt 3), 678–692 (2011).
  • de Jong R, Bezemer AC, Zomerdijk TP, van de Pouw-Kraan T, Ottenhoff TH, Nibbering PH. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur. J. Immunol. 26(9), 2067–2074 (1996).
  • Ockenfels HM, Schultewolter T, Ockenfels G, Funk R, Goos M. The antipsoriatic agent dimethylfumarate immunomodulates T-cell cytokine secretion and inhibits cytokines of the psoriatic cytokine network. Br. J. Dermatol. 139(3), 390–395 (1998).
  • Vandermeeren M, Janssens S, Borgers M, Geysen J. Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochem. Biophys. Res. Commun. 234(1), 19–23 (1997).
  • Rubant SA, Ludwig RJ, Diehl S et al. Dimethylfumarate reduces leukocyte rolling in vivo through modulation of adhesion molecule expression. J. Invest. Dermatol. 128(2), 326–331 (2008).
  • Gerdes S, Shakery K, Mrowietz U. Dimethylfumarate inhibits nuclear binding of nuclear factor kappaB but not of nuclear factor of activated T cells and CCAAT/enhancer binding protein beta in activated human T cells. Br. J. Dermatol. 156(5), 838–842 (2007).
  • Mrowietz U, Asadullah K. Dimethylfumarate for psoriasis: more than a dietary curiosity. Trends Mol. Med. 11(1), 43–48 (2005).
  • Zhu K, Mrowietz U. Inhibition of dendritic cell differentiation by fumaric acid esters. J. Invest. Dermatol. 116(2), 203–208 (2001).
  • Loewe R, Holnthoner W, Gröger M et al. Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J. Immunol. 168(9), 4781–4787 (2002).
  • Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflammation 7, 30 (2010).
  • Ghoreschi K, Brück J, Kellerer C et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208(11), 2291–2303 (2011).
  • Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J. Neurol. 251(3), 261–268 (2004).
  • Johnson DA, Amirahmadi S, Ward C, Fabry Z, Johnson JA. The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol. Sci. 114(2), 237–246 (2010).
  • Berer K, Mues M, Koutrolos M et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374), 538–541 (2011).
  • Esplugues E, Huber S, Gagliani N et al. Control of TH17 cells occurs in the small intestine. Nature 475(7357), 514–518 (2011).
  • Kleinewietfeld M, Manzel A, Titze J et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496(7446), 518–522 (2013).
  • Schimrigk S, Brune N, Hellwig K et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur. J. Neurol. 13(6), 604–610 (2006).
  • Kappos L, Gold R, Miller DH et al.; BG-12 Phase IIb Study Investigators. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372(9648), 1463–1472 (2008).
  • Kappos L, Gold R, Miller DH et al. Effect of BG-12 on contrast-enhanced lesions in patients with relapsing–remitting multiple sclerosis: subgroup analyses from the phase 2b study. Mult. Scler. 18(3), 314–321 (2012).
  • MacManus DG, Miller DH, Kappos L et al. BG-12 reduces evolution of new enhancing lesions to T1-hypointense lesions in patients with multiple sclerosis. J. Neurol. 258(3), 449–456 (2011).
  • Gold R, Kappos L, Arnold DL et al.; DEFINE Study Investigators. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 367(12), 1098–1107 (2012).
  • Fox RJ, Miller DH, Phillips JT et al.; CONFIRM Study Investigators. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N. Engl. J. Med. 367(12), 1087–1097 (2012).
  • Hanson J, Gille A, Offermanns S. Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin. Pharmacol. Ther. 136(1), 1–7 (2012).
  • Ermis U, Weis J, Schulz JB. PML in a patient treated with fumaric acid. N. Engl. J. Med. 368(17), 1657–1658 (2013).
  • Sweetser MT, Dawson KT, Bozic C. Manufacturer’s response to case reports of PML. N. Engl. J. Med. 368(17), 1659–1661 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.