83
Views
17
CrossRef citations to date
0
Altmetric
Theme: Demyelinating Diseases - Review

Cellular targets and mechanistic strategies of remyelination-promoting IgMs as part of the naturally occurring autoantibody repertoire

, , , &
Pages 1017-1029 | Published online: 09 Jan 2014

References

  • Avrameas S. Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol. Today 12(5), 154–159 (1991).
  • Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr. Opin. Immunol. 7(6), 812–818 (1995).
  • Dighiero G, Lymberi P, Mazie JC et al. Murine hybridomas secreting natural monoclonal antibodies reacting with self antigens. J. Immunol. 131(5), 2267–2272 (1983).
  • Haspel MV, Onodera T, Prabhakar BS, Horita M, Suzuki H, Notkins AL. Virus-induced autoimmunity: monoclonal antibodies that react with endocrine tissues. Science 220(4594), 304–306 (1983).
  • Haspel MV, Onodera T, Prabhakar BS et al. Multiple organ-reactive monoclonal autoantibodies. Nature 304(5921), 73–76 (1983).
  • Prabhakar BS, Saegusa J, Onodera T, Notkins AL. Lymphocytes capable of making monoclonal autoantibodies that react with multiple organs are a common feature of the normal B cell repertoire. J. Immunol. 133(6), 2815–2817 (1984).
  • Satoh J, Prabhakar BS, Haspel MV, Ginsberg-Fellner F, Notkins AL. Human monoclonal autoantibodies that react with multiple endocrine organs. N. Engl. J. Med. 309(4), 217–220 (1983).
  • Lacroix-Desmazes S, Kaveri SV, Mouthon L et al. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J. Immunol. Methods 216(1–2), 117–137 (1998).
  • Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Invest. 117(3), 712–718 (2007).
  • Avrameas S, Selmi C. Natural autoantibodies in the physiology and pathophysiology of the immune system. J. Autoimmun. 41, 46–49 (2013).
  • Avrameas S, Ternynck T. The natural autoantibodies system: between hypotheses and facts. Mol. Immunol. 30(12), 1133–1142 (1993).
  • Brandlein S, Rauschert N, Rasche L et al. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol. Cancer Ther. 6(1), 326–333 (2007).
  • Pohle T, Brandlein S, Ruoff N, Muller-Hermelink HK, Vollmers HP. Lipoptosis: tumor-specific cell death by antibody-induced intracellular lipid accumulation. Cancer Res, 64(11), 3900–3906 (2004).
  • Rauschert N, Brandlein S, Holzinger E, Hensel F, Muller-Hermelink HK, Vollmers HP. A new tumor-specific variant of GRP78 as target for antibody-based therapy. Lab. Invest. 88(4), 375–386 (2008).
  • Vollmers HP, Brandlein S. Natural antibodies and cancer. N. Biotechnol. 25(5), 294–298 (2009).
  • Bieber AJ, Warrington A, Asakura K et al. Human antibodies accelerate the rate of remyelination following lysolecithin-induced demyelination in mice. Glia 37(3), 241–249 (2002).
  • Warrington AE, Asakura K, Bieber AJ et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc. Natl Acad. Sci. USA 97(12), 6820–6825 (2000).
  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. J. Neurosci. Res. 85(5), 967–976 (2007).
  • Roy B, Shukla S, Lyszkiewicz M et al. Somatic hypermutation in peritoneal B1b cells. Mol. Immunol. 46(8–9), 1613–1619 (2009).
  • Tumas-Brundage KM, Notidis E, Heltemes L, Zhang X, Wysocki LJ, Manser T. Predominance of a novel splenic B cell population in mice expressing a transgene that encodes multireactive antibodies: support for additional heterogeneity of the B cell compartment. Int. Immunol. 13(4), 475–484 (2001).
  • Baumgarth N, Tung JW, Herzenberg LA. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 26(4), 347–362 (2005).
  • Holodick NE, Tumang JR, Rothstein TL. Immunoglobulin secretion by B1 cells: differential intensity and IRF4-dependence of spontaneous IgM secretion by peritoneal and splenic B1 cells. Eur. J. Immunol. 40(11), 3007–3016 (2010).
  • Kantor AB, Merrill CE, Herzenberg LA, Hillson JL. An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. J. Immunol. 158(3), 1175–1186 (1997).
  • Landsteiner K. The Specificity of Serological Reactions. Harvard University Press, MA, USA (1947).
  • Casali P, Notkins AL. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today 10(11), 364–368 (1989).
  • Dighiero G, Guilbert B, Avrameas S. Naturally occurring antibodies against nine common antigens in humans sera. II. High incidence of monoclonal Ig exhibiting antibody activity against actin and tubulin and sharing antibody specificities with natural antibodies. J. Immunol. 128(6), 2788–2792 (1982).
  • Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect. Immun. 65(10), 3997–4004 (1997).
  • Marchalonis JJ, Adelman MK, Robey IF, Schluter SF, Edmundson AB. Exquisite specificity and peptide epitope recognition promiscuity, properties shared by antibodies from sharks to humans. J. Mol. Recognit. 14(2), 110–121 (2001).
  • Notkins AL. Polyreactivity of antibody molecules. Trends Immunol. 25(4), 174–179 (2004).
  • Crouzier R, Martin T, Pasquali JL. Heavy chain variable region, light chain variable region, and heavy chain CDR3 influences on the mono- and polyreactivity and on the affinity of human monoclonal rheumatoid factors. J. Immunol. 154(9), 4526–4535 (1995).
  • Ditzel HJ, Itoh K, Burton DR. Determinants of polyreactivity in a large panel of recombinant human antibodies from HIV-1 infection. J. Immunol. 157(2), 739–749 (1996).
  • Ichiyoshi Y, Casali P. Analysis of the structural correlates for antibody polyreactivity by multiple reassortments of chimeric human immunoglobulin heavy and light chain V segments. J. Exp. Med. 180(3), 885–895 (1994).
  • Martin T, Crouzier R, Weber JC, Kipps TJ, Pasquali JL. Structure-function studies on a polyreactive (natural) autoantibody. Polyreactivity is dependent on somatically generated sequences in the third complementarity-determining region of the antibody heavy chain. J. Immunol. 152(12), 5988–5996 (1994).
  • Polymenis M, Stollar BD. Critical binding site amino acids of anti-Z-DNA single chain Fv molecules. Role of heavy and light chain CDR3 and relationship to autoantibody activity. J. Immunol. 152(11), 5318–5329 (1994).
  • Fernandez C, Alarcon-Riquelme ME, Sverremark E. Polyreactive binding of antibodies generated by polyclonal B cell activation. II. Crossreactive and monospecific antibodies can be generated from an identical Ig rearrangement by differential glycosylation. Scand. J. Immunol. 45(3), 240–247 (1997).
  • Leibiger H, Wustner D, Stigler RD, Marx U. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Biochem. J. 338 ( Pt 2), 529–538 (1999).
  • Leung SO, Dion AS, Pellegrini MC et al. Effect of VK framework-1 glycosylation on the binding affinity of lymphoma-specific murine and chimeric LL2 antibodies and its potential use as a novel conjugation site. Int. J. Cancer 60(4), 534–538 (1995).
  • Wright A, Tao MH, Kabat EA, Morrison SL. Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J. 10(10), 2717–2723 (1991).
  • Rodriguez M, Oleszak E, Leibowitz J. Theiler's murine encephalomyelitis: a model of demyelination and persistence of virus. Crit. Rev. Immunol. 7(4), 325–365 (1987).
  • Rodriguez M, Lennon VA, Benveniste EN, Merrill JE. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J. Neuropathol. Exp. Neurol. 46(1), 84–95 (1987).
  • Rodriguez M, Lennon VA. Immunoglobulins promote remyelination in the central nervous system. Ann. Neurol. 27(1), 12–17 (1990).
  • Miller DJ, Sanborn KS, Katzmann JA, Rodriguez M. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J. Neurosci. 14(10), 6230–6238 (1994).
  • Paz Soldan MM, Warrington AE, Bieber AJ et al. Remyelination-promoting antibodies activate distinct Ca2+ influx pathways in astrocytes and oligodendrocytes: relationship to the mechanism of myelin repair. Mol. Cell Neurosci. 22(1), 14–24 (2003).
  • Eisenbarth GS, Walsh FS, Nirenberg M. Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl Acad. Sci. USA 76(10), 4913–4917 (1979).
  • Ilyas AA, Quarles RH, Brady RO. The monoclonal antibody HNK-1 reacts with a human peripheral nerve ganglioside. Biochem. Biophys. Res. Commun. 122(3), 1206–1211 (1984).
  • Sommer I, Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83(2), 311–327 (1981).
  • Asakura K, Miller DJ, Pease LR, Rodriguez M. Targeting of IgMkappa antibodies to oligodendrocytes promotes CNS remyelination. J. Neurosci. 18(19), 7700–7708 (1998).
  • Mitsunaga Y, Ciric B, Van Keulen V et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. FASEB J. 16(10), 1325–1327 (2002).
  • Warrington AE, Bieber AJ, Ciric B, Pease LR, Van Keulen V, Rodriguez M. A recombinant human IgM promotes myelin repair after a single, very low dose. J. Neurosci. Res. 85(5), 967–976 (2007).
  • Asakura K, Miller DJ, Murray K, Bansal R, Pfeiffer SE, Rodriguez M. Monoclonal autoantibody SCH94.03, which promotes central nervous system remyelination, recognizes an antigen on the surface of oligodendrocytes. J. Neurosci. Res. 43(3), 273–281 (1996).
  • Asakura K, Pogulis RJ, Pease LR, Rodriguez M. A monoclonal autoantibody which promotes central nervous system remyelination is highly polyreactive to multiple known and novel antigens. J. Neuroimmunol. 65(1), 11–19 (1996).
  • Pavelko KD, van Engelen BG, Rodriguez M. Acceleration in the rate of CNS remyelination in lysolecithin-induced demyelination. J. Neurosci. 18(7), 2498–2505 (1998).
  • Wittenberg NJ, Im H, Xu X et al. High-affinity binding of remyelinating natural autoantibodies to myelin-mimicking lipid bilayers revealed by nanohole surface plasmon resonance. Anal. Chem. 84(14), 6031–6039 (2012).
  • Dubois C, Manuguerra JC, Hauttecoeur B, Maze J. Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J. Biol. Chem. 265(5), 2797–2803 (1990).
  • Fredman P, Magnani JL, Nirenberg M, Ginsburg V. Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue. Arch. Biochem. Biophys. 233(2), 661–666 (1984).
  • Burger D, Perruisseau G, Simon M, Steck AJ. Comparison of the N-linked oligosaccharide structures of the two major human myelin glycoproteins MAG and P0: assessment of the structures bearing the epitope for HNK-1 and human monoclonal immunoglobulin M found in demyelinating neuropathy. J. Neurochem. 58(3), 854–861 (1992).
  • Burger D, Simon M, Perruisseau G, Steck AJ. The epitope(s) recognized by HNK-1 antibody and IgM paraprotein in neuropathy is present on several N-linked oligosaccharide structures on human P0 and myelin-associated glycoprotein. J. Neurochem. 54(5), 1569–1575 (1990).
  • Schachner M. Cell type-specific surface antigens in the mammalian nervous system. J. Neurochem. 39(1), 1–8 (1982).
  • Singh H, Pfeiffer SE. Myelin-associated galactolipids in primary cultures from dissociated fetal rat brain: biosynthesis, accumulation, and cell surface expression. J. Neurochem. 45(5), 1371–1381 (1985).
  • Bansal R, Pfeiffer SE. Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc. Natl Acad. Sci. USA 86(16), 6181–6185 (1989).
  • Bansal R, Stefansson K, Pfeiffer SE. Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. J. Neurochem. 58(6), 2221–2229 (1992).
  • Kirschning E, Jensen K, Dubel S, Rutter G, Hohenberg H, Will H. Primary structure of the antigen-binding domains of a human oligodendrocyte-reactive IgM monoclonal antibody derived from a patient with multiple sclerosis. J. Neuroimmunol. 99(1), 122–130 (1999).
  • Sakakibara K, Momoi T, Uchida T, Nagai Y. Evidence for association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cells. Nature 293(5827), 76–78 (1981).
  • Zalc B, Monge M, Dupouey P, Hauw JJ, Baumann NA. Immunohistochemical localization of galactosyl and sulfogalactosyl ceramide in the brain of the 30-day-old mouse. Brain Res. 211(2), 341–354 (1981).
  • Inoko E, Nishiura Y, Tanaka H et al. Developmental stage-dependent expression of an alpha2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 20(7), 916–928 (2010).
  • Dubois C, Magnani JL, Grunwald GB et al. Monoclonal antibody 18B8, which detects synapse-associated antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer). J. Biol. Chem. 261(8), 3826–3830 (1986).
  • Hirabayashi Y, Hirota M, Matsumoto M, Tanaka H, Obata K, Ando S. Developmental changes of C-series polysialogangliosides in chick brains revealed by mouse monoclonal antibodies M6704 and M7103 with different epitope specificities. J. Biochem. 104(6), 973–979 (1988).
  • Hirabayashi Y, Hirota M, Suzuki Y, Matsumoto M, Obata K, Ando S. Developmentally expressed O-acetyl ganglioside GT3 in fetal rat cerebral cortex. Neurosci. Lett. 106(1–2), 193–198 (1989).
  • Rosner H, Greis C, Henke-Fahle S. Developmental expression in embryonic rat and chicken brain of a polysialoganglioside-antigen reacting with the monoclonal antibody Q 211. Brain Res. 470(2), 161–171 (1988).
  • Rosner H, Sonnentag U, Meiri K. Developmental changes of growth cone gangliosides of the postnatal rat cerebrum. Neuroreport 4(10), 1207–1210 (1993).
  • Heffer-Lauc M, Cacic M, Serman D. C-series polysialogangliosides are expressed on stellate neurons of adult human cerebellum. Glycoconj. J. 15(4), 423–426 (1998).
  • Carroll WM, Jennings AR. Early recruitment of oligodendrocyte precursors in CNS demyelination. Brain 117 ( Pt 3), 563–578 (1994).
  • Gensert JM, Goldman JE. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19(1), 197–203 (1997).
  • Horner PJ, Power AE, Kempermann G et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 20(6), 2218–2228 (2000).
  • Watanabe M, Toyama Y, Nishiyama A. Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J. Neurosci. Res. 69(6), 826–836 (2002).
  • Windrem MS, Roy NS, Wang J et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res. 69(6), 966–975 (2002).
  • Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl Acad. Sci. USA 96(7), 4089–4094 (1999).
  • Watzlawik JO, Warrington AE, Rodriguez M. PDGF is required for remyelination-promoting igm stimulation of oligodendrocyte progenitor cell proliferation. PLoS ONE 8(2), e55149 (2013).
  • Kleine TO, Hackler R, Zofel P. Age-related alterations of the blood-brain-barrier (bbb) permeability to protein molecules of different size. Z. Gerontol. 26(4), 256–259 (1993).
  • Argaw AT, Asp L, Zhang J et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122(7), 2454–2468 (2012).
  • Pirko I, Ciric B, Gamez J et al. A human antibody that promotes remyelination enters the CNS and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J. 18(13), 1577–1579 (2004).
  • Broman T. Blood-Brain Barrier Damage in Multiple Sclerosis Supravital Test-Observations. Acta Neurol. Scand. Suppl. 40, ( Suppl. 10), 21–14 (1964).
  • McQuaid S, Cunnea P, McMahon J, Fitzgerald U. The effects of blood-brain barrier disruption on glial cell function in multiple sclerosis. Biochem. Soc. Trans. 37( Pt 1), 329–331 (2009).
  • Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 90(3), 228–238 (1995).
  • Gay D, Esiri M. Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain 114 ( Pt 1B), 557–572 (1991).
  • Kwon EE, Prineas JW. Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J. Neuropathol. Exp. Neurol. 53(6), 625–636 (1994).
  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann. Neurol. 43(6), 809–814 (1998).
  • Kermode AG, Thompson AJ, Tofts P et al. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 113 ( Pt 5), 1477–1489 (1990).
  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130( Pt 11), 2800–2815 (2007).
  • Sobel RA. The extracellular matrix in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 57(3), 205–217 (1998).
  • Sobel RA, Chen M, Maeda A, Hinojoza JR. Vitronectin and integrin vitronectin receptor localization in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 54(2), 202–213 (1995).
  • Sobel RA, Mitchell ME. Fibronectin in multiple sclerosis lesions. Am. J. Pathol. 135(1), 161–168 (1989).
  • Vos CM, Geurts JJ, Montagne L et al. Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol. Dis. 20(3), 953–960 (2005).
  • Howe CL, Bieber AJ, Warrington AE, Pease LR, Rodriguez M. Antiapoptotic signaling by a remyelination-promoting human antimyelin antibody. Neurobiol. Dis. 15(1), 120–131 (2004).
  • Kanter JL, Narayana S, Ho PP et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12(1), 138–143 (2006).
  • Mitsunaga Y, Ciric B, Van Keulen V et al. Direct evidence that a human antibody derived from patient serum can promote myelin repair in a mouse model of chronic-progressive demyelinating disease. Faseb. J. 16(10), 1325–1327 (2002).
  • Watzlawik J, Holicky E, Edberg DD et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 58(15), 1782–1793 (2010).
  • Bansal R, Winkler S, Bheddah S. Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J. Neurosci. 19(18), 7913–7924 (1999).
  • Ranscht B, Wood PM, Bunge RP. Inhibition of in vitro peripheral myelin formation by monoclonal anti-galactocerebroside. J. Neurosci. 7(9), 2936–2947 (1987).
  • Stangel M, Bernard D. Polyclonal IgM influence oligodendrocyte precursor cells in mixed glial cell cultures: implications for remyelination. J. Neuroimmunol. 138(1–2), 25–30 (2003).
  • Pringle N, Collarini EJ, Mosley MJ, Heldin CH, Westermark B, Richardson WD. PDGF A chain homodimers drive proliferation of bipotential (O-2A) glial progenitor cells in the developing rat optic nerve. EMBO J. 8(4), 1049–1056 (1989).
  • Silberstein FC, De Simone R, Levi G, Aloisi F. Cytokine-regulated expression of platelet-derived growth factor gene and protein in cultured human astrocytes. J. Neurochem. 66(4), 1409–1417 (1996).
  • van Heyningen P, Calver AR, Richardson WD. Control of progenitor cell number by mitogen supply and demand. Curr. Biol. 11(4), 232–241 (2001).
  • Colognato H, Baron W, Avellana-Adalid V et al. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat. Cell Biol. 4(11), 833–841 (2002).
  • Frost EE, Buttery PC, Milner R, ffrench-Constant C. Integrins mediate a neuronal survival signal for oligodendrocytes. Curr. Biol. 9(21), 1251–1254 (1999).
  • Baron W, Shattil SJ, ffrench-Constant C. The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J. 21(8), 1957–1966 (2002).
  • Baron W, Colognato H, ffrench-Constant C. Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia 49(4), 467–479 (2005).
  • Redwine JM, Armstrong RC. In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J. Neurobiol. 37(3), 413–428 (1998).
  • Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC. Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J. Neuropathol. Exp. Neurol. 66(11), 975–988 (2007).
  • Ilyas AA, Quarles RH, MacIntosh TD et al. IgM in a human neuropathy related to paraproteinemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside. Proc. Natl Acad. Sci. U.S.A. 81(4), 1225–1229 (1984).
  • Ilyas AA, Willison HJ, Quarles RH et al. Serum antibodies to gangliosides in Guillain-Barre syndrome. Ann. Neurol. 23(5), 440–447 (1988).
  • Latov N. Pathogenesis and therapy of neuropathies associated with monoclonal gammopathies. Ann. Neurol. 37( Suppl. 1), S32–42 (1995).
  • Quarles RH, Weiss MD. Autoantibodies associated with peripheral neuropathy. Muscle Nerve 22(7), 800–822 (1999).
  • Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain 125( Pt 12), 2591–2625 (2002).
  • Carpo M, Meucci N, Allaria S et al. Anti-sulfatide IgM antibodies in peripheral neuropathy. J. Neurol. Sci. 176(2), 144–150 (2000).
  • Dabby R, Weimer LH, Hays AP, Olarte M, Latov N. Antisulfatide antibodies in neuropathy: clinical and electrophysiologic correlates. Neurology 54(7), 1448–1452 (2000).
  • Ferrari S, Morbin M, Nobile-Orazio E et al. Antisulfatide polyneuropathy: antibody-mediated complement attack on peripheral myelin. Acta Neuropathol. 96(6), 569–574 (1998).
  • Quattrini A, Corbo M, Dhaliwal SK et al. Anti-sulfatide antibodies in neurological disease: binding to rat dorsal root ganglia neurons. J. Neurol. Sci. 112(1–2), 152–159 (1992).
  • Chassande B, Leger JM, Younes-Chennoufi AB et al. Peripheral neuropathy associated with IgM monoclonal gammopathy: correlations between M-protein antibody activity and clinical/electrophysiological features in 40 cases. Muscle Nerve 21(1), 55–62 (1998).
  • Latov N. Antibodies to glycoconjugates in neuropathy and motor neuron disease. Prog. Brain Res. 101, 295–303 (1994).
  • Weiss MD, Dalakas MC, Lauter CJ, Willison HJ, Quarles RH. Variability in the binding of anti-MAG and anti-SGPG antibodies to target antigens in demyelinating neuropathy and IgM paraproteinemia. J. Neuroimmunol. 95(1–2), 174–184 (1999).
  • Kaida K, Kusunoki S. [Immune-mediated neuropathy and anti-glycolipid antibodies]. Brain Nerve 65(4), 413–423 (2013).
  • Gorio A, Vitadello M. Ganglioside prevention of neuronal functional decay. Prog. Brain Res. 71, 203–208 (1987).
  • Ledeen RW. Biology of gangliosides: neuritogenic and neuronotrophic properties. J. Neurosci. Res. 12(2–3), 147–159 (1984).
  • Bradley WG, Badger GJ, Tandan R et al. Double-blind controlled trials of Cronassial in chronic neuromuscular diseases and ataxia. Neurology 38(11), 1731–1739 (1988).
  • Horowitz SH. Ganglioside (Cronassial) therapy in diabetic neuropathy. Adv. Exp. Med. Biol. 174, 593–600 (1984).
  • Ledeen RW, Oderfeld-Nowak B, Brosnan CF, Cervone A. Gangliosides offer partial protection in experimental allergic neuritis. Ann. Neurol. 27 Suppl., S69–S74 (1990).
  • Oderfeld-Nowak B, Brosnan C, Cervone A, Oderfeld J, Ledeen RW. Gangliosides improve the outcome of experimental allergic neuritis (EAN). Acta Neurobiol. Exp. (Wars) 50(4–5), 495–504 (1990).
  • Ponzin D, Menegus AM, Kirschner G, Nunzi MG, Fiori MG, Raine CS. Effects of gangliosides on the expression of autoimmune demyelination in the peripheral nervous system. Ann. Neurol. 30(5), 678–685 (1991).
  • Zielasek J, Kolb H. Ganglioside therapy of type I diabetes: enhancement of hyperglycemia in the low dose streptozotocin model. Life Sci. 51(1), 49–52 (1992).
  • Dasgupta S, Li D, Yu RK. Lack of apparent neurological abnormalities in rabbits sensitized by gangliosides. Neurochem. Res. 29(11), 2147–2152 (2004).
  • Ilyas AA, Chen ZW. Lewis rats immunized with GM1 ganglioside do not develop peripheral neuropathy. J. Neuroimmunol. 188(1–2), 34–38 (2007).
  • Lopez PH, Villa AM, Sica RE, Nores GA. High affinity as a disease determinant factor in anti-GM(1) antibodies: comparative characterization of experimentally induced vs. disease-associated antibodies. J. Neuroimmunol. 128(1–2), 69–76 (2002).
  • Hadden RD, Gregson NA, Gold R, Willison HJ, Hughes RA. Guillain-Barre syndrome serum and anti-Campylobacter antibody do not exacerbate experimental autoimmune neuritis. J. Neuroimmunol. 119(2), 306–316 (2001).
  • Sheikh KA, Zhang G, Gong Y, Schnaar RL, Griffin JW. An anti-ganglioside antibody-secreting hybridoma induces neuropathy in mice. Ann. Neurol. 56(2), 228–239 (2004).
  • Yuki N, Susuki K, Koga M et al. Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome. Proc. Natl Acad. Sci. USA 101(31), 11404–11409 (2004).
  • Rojas-Garcia R, Gallardo E, Illa I. Paraproteinemic neuropathies. Presse Med. 42(6 Pt 2), e225–e234 (2013).
  • Dyck PJ, Low PA, Windebank AJ et al. Plasma exchange in polyneuropathy associated with monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 325(21), 1482–1486 (1991).
  • Nobile-Orazio E, Meucci N, Baldini L, Di Troia A, Scarlato G. Long-term prognosis of neuropathy associated with anti-MAG IgM M-proteins and its relationship to immune therapies. Brain 123 ( Pt 4), 710–717 (2000).
  • Mygland A, Monstad P. Chronic acquired demyelinating symmetric polyneuropathy classified by pattern of weakness. Arch. Neurol. 60(2), 260–264 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.