144
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Tissue regeneration in stroke: cellular and trophic mechanisms

References

  • Stahnisch FW, Nitsch R. Santiago Ramón y Cajal’s concept of neuronal plasticity: the ambiguity lives on. Trends Neurosci 2002;25:589-91
  • Altman J. Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 1966;128:431-73
  • Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969;137:433-57
  • Kaplan MS, Hinds JW. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 1977;197:1092-4
  • Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707-10
  • Kukekov VG, Laywell ED, Suslov O, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999;156:333-44
  • Duan X, Kang E, Liu CY, et al. Development of neural stem cell in the adult brain. Curr Opin Neurobiol 2008;18:108-15
  • Ma DK, Bonaguidi MA, Ming GL, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res 2009;19:672-82
  • Shimada IS, Peterson BM, Spees JL. Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke. Stroke 2010;41:e552-60
  • Wang Y, Rudd AG, Wolfe CD. Age and ethnic disparities in incidence of stroke over time: the South London Stroke Register. Stroke 2013;44:3298-304
  • Gilgun-Sherki Y, Streifler JY. Cell replacement therapy in acute stroke: current state. In: Stem cell and gene-based therapy. Springer-Verlag London Limited; London: 2006
  • Green AR. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 2008;153(Suppl 1)):S325-38
  • Hung MCh, Hsieh ChL, Hwang JS, et al. Estimation of the long-term care needs of stroke patients by integrating functional disability and survival. PLoS One 2013;8:e75605
  • Kalladka D, Muir KW. Brain repair: cell therapy in stroke. Stem Cells Cloning 2014;7:31-44
  • Jivan K, Ranchod K, Modi G. Management of ischaemic stroke in the acute setting: review of the current status. Cardiovasc J Afr 2013;24:88-94
  • Bivard A, Lin L, Parsonsb MW. Review of stroke thrombolytics. J Stroke 2013;15:90-8
  • Paczkowska E, Gołąb-Janowska M, Bajer-Czajkowska A, et al. Increased circulating endothelial progenitor cells in patients with hemorrhagic and ischemic stroke: the role of Endothelin-1. J Neurol Sci 2013;325:90-9
  • Courties G, Moskowitz MA, Nahrendorf M. The innate immune system after ischemic injury — lessons to be learned from the heart and brain. JAMA Neurol 2014;71:233-6
  • Yoo SW, Chang DY, Lee HS, et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis 2013;58:249-57
  • Shichita T, Ago T, Kamouchi M, et al. Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem 2012;123(Suppl 2)):29-38
  • Ren X, Akiyoshi K, Dziennis S, et al. Regulatory B cells limit CNS inflammation and neurologic deficits in murine experimental stroke. J Neurosci 2011;31:8556-63
  • Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-37
  • Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104-7
  • Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009;9:429-39
  • Zheng K, Kim JY, Ma H, et al. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 2008;28:53-63
  • Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 2003;9:439-47
  • Imayoshi I, Sakamoto M, Ohtsuka T, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 2008;11:1153-61
  • Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev 2003;13:543-50
  • Pastrana E, Cheng LC, Doetsch F. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 2009;106:6387-92
  • Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci 2013;6:70
  • Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA 2001;98:4710-15
  • Jiang W, Gu W, Brännström T, et al. Cortical neurogenesis in adult rats after transient middle cerebral artery occlusion. Stroke 2001;32:1201-7
  • Cayre M, Canoll P, Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain. Prog. Neurobiol 2009;88:41-63
  • Young CC, Brooks KJ, Buchan AM, Szele FG. Cellular and molecular determinants of stroke-induced changes in subventricular zone cell migration. Antioxid Redox Signal 2011;14:1877-88
  • Kreuzberg M, Kanov E, Timofeev O, et al. Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol 2011;226:90-9
  • Blizzard C A, Chuckowree JA, King AE, et al. Focal damage to the adult rat neocortex induces wound healing accompanied by axonal sprouting and dendritic structural plasticity. Cereb Cortex 2011;21:281-91
  • Buffo A, Rite I, Tripathi P, et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 2008;105:3581-6
  • Carlén M, Meletis K, Göritz C, et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009;12:259-67
  • Danilov AI, Kokaia Z, Lindvall O. Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience 2012;214:159-70
  • Paczkowska E, Kucia M, Koziarska D, et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009;40:1237-44
  • Kucia M, Reca R, Campbell FR, et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006;20:857-69
  • Yu X, Chen D, Zhang Y, et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci 2012;316:141-9
  • Borlongan CV, Glover LE, Tajiri N, et al. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011;95:213-28
  • Vendrame M, Cassady J, Newcomb J, et al. Infusion of human umbilical cord blood cells in rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004;35:2390-5
  • Kawada H, Takizawa S, Takanashi T, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 2006;113:701-10
  • Paczkowska E, Larysz B, Rzeuski R, et al. Human hematopoietic stem/progenitor-enriched CD34(+) cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction. Eur J Haematol 2005;75:461-7
  • Hennemann B, Ickenstein G, Sauerbruch S, et al. Mobilization of CD34+ hematopoietic cells, colony-forming cells and long-term culture-initiating cells into the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy 2008;10:303-11
  • Salati S, Zini R, Bianchi E, et al. Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells. Stem Cells 2008;26:950-9
  • Shen Q, Goderie SK, Jin L, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 2004;304:1338-40
  • Chopp M, Li Y, Zhang J. Plasticity and remodeling of brain. J Neurol Sci 2008;265:97-101
  • Thored P, Wood J, Arvidsson A, et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 2007;38:3032-9
  • Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 2004;114:330-8
  • Arenillas JF, Sobrino T, Castillo J, Dávalos A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 2007;9:205-12
  • Marshall RS, Zarahn E, Alon L, et al. Early imaging correlates of subsequent motor recovery after stroke. Ann Neurol 2009;65:596-602
  • Grau AJ, Ruf A, Vogt A, et al. Increased fraction of circulating activated platelets in acute and previous cerebrovascular ischemia. Thromb Haemost 1998;80:298-301
  • Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000;275:1521-4
  • Gear AR, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation 2003;10:335-50
  • Rafii DC, Psaila B, Butler J, et al. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2008;28:217-22
  • Ding X, Li Y, Liu Z, et al. The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice. J. Cereb. Blood Flow Metab 2013;21:1015-24
  • Huang W, Mo X, Qin C, et al. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res 2013;21:320-8
  • Tsai MJ, Tsai SK, Hu BR, et al. Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats. J Biomed Sci 2014;21:5
  • Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 2010;21:1099-106
  • Chen X, Li Y, Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002;21:275-9
  • Paczkowska E, Kaczyńska K, Pius-Sadowska E, et al. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders. PLoS One 2013;8:e83833
  • Lindholm P, Saarma M. Novel CDNF/MANF family of neurotrophic factors. Dev Neurobiol 2010;70:360-71
  • Sohn J, Selvaraj V, Wakayama K, et al. PEDF is a novel oligodendrogenic morphogen acting on the adult SVZ and corpus callosum. J Neurosci 2012;32:12152-64
  • Pius-Sadowska E, Machaliński B. Role of neurotrophins/neurotrophin receptors axis in regulation of neuron al homeostasis. Adv Cell Biol 2014;41:285-314
  • Huang EJ, Reichardt L. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 2001;24:677-736
  • Saarma M, Sariola H. Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF). Microsc Res Tech 1999;45:292-302
  • Brown CE, Boyd JD, Murphy TH. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab 2009;30:783-91
  • Ueno Y, Chopp M, Zhang L, et al. Axonal outgrowth and dendritic plasticity in the cortical peri-infarct area after experimental stroke. Stroke 2012;43:2221-8
  • Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol 2014;252:47-56
  • Sulejczak D, Ziemlińska E, Czarkowska-Bauch J, et al. Focal photothrombotic lesion of the rat motor cortex increases BDNF levels in motor-sensory cortical areas not accompanied by recovery of forelimb motor skills. J Neurotrauma 2007;24:1362-77
  • Di Lazzaro V, Profice P, Pilato F, et al. BDNF plasma levels in acute stroke. Neurosci Lett 2007;422:128-30
  • Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol 1995;136:73-88
  • Keiner S, Witte OW, Redecker C. Immunocytochemical detection of newly generated neurons in the perilesional area of cortical infarcts after intraventricular application of brain-derived neurotrophic factor. J Neuropathol Exp Neurol 2009;68:83-93
  • Grade S, Weng YC, Snapyan M, et al. Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 2013;8:e55039
  • Kokaia Z, Andsberg G, Yan Q, Lindvall O. Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 1998;154:289-301
  • Bejot Y, Prigent-Tessier A, Cachia C, et al. Time-dependent contribution of non-neuronal cells to BDNF production after ischemic stroke in rats. Neurochem Int 2011;58:102-11
  • Qin L, Jing D, Parauda S, et al. An adaptive role for BDNF val66met polymorphism in motor recovery in chronic stroke. J Neurosci 2014;34:2493-502
  • Vilkki J, Lappalainen J, Juvela S, et al. Relationship of the Met allele of the brain-derived neurotrophic factor Val66Met polymorphism to memory after aneurysmal subarachnoid hemorrhage. Neurosurgery 2008;63:198-203
  • Mirowska-Guzel D, Gromadzka G, Czlonkowski A, Czlonkowska A. BDNF -270 C>T polymorphisms might be associated with stroke type and BDNF-196 G& GT ; A corresponds to early neurological deficit in hemorrhagic stroke. J Neuroimmunol 2012;249:71-5
  • Chan KM, Lam DT, Pong K, et al. Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochem Res 1996;21:763-7
  • Chung JY, Kim MW, Bang MS, Kim M. Increased expression of neurotrophin 4 following focal cerebral ischemia in adult rat brain with treadmill exercise. PLoS One 2013;8:e52461
  • Zhang J, Shi Q, Yang P, et al. Neuroprotection of neurotrophin-3 against focal cerebral ischemia/reperfusion injury is regulated by hypoxia-responsive element in rats. Neuroscience 2012;222:1-9
  • Cristofaro B, Stone OA, Caporali A, et al. Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 2010;30:1143-50
  • Machaliński B, Łażewski-Banaszak P, Dąbkowska E, et al. [The role of neurotrophic factors in regeneration of the nervous system]. Neurol Neurochir Pol 2012;46:579-90
  • Kitagawa H, Hayashi T, Mitsumoto Y, et al. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 1998;29:1417-22
  • Zhang WR, Hayashi T, Iwai M, et al. Time dependent amelioration against ischemic brain damage by glial cell line-derived neurotrophic factor after transient middle cerebral artery occlusion in rat. Brain Res 2001;903:253-6
  • Zhang WR, Sato K, Iwai M, et al. Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res 2002;947:140-5
  • Kobayashi T, Ahlenius H, Thored P, et al. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke 2006;37:2361-7
  • Turrini P, Gaetano C, Antonelli A, et al. Nerve growth factor induces angiogenic activity in a mouse model of hindlimb ischemia. Neurosci Lett 2002;32:109-12
  • Kermani P, Rafii D, Jin D, et al. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest 2005;115:653-63
  • Lin KC, Chung HY, Wu CY, et al. Constraint-induced therapy versus control intervention in patients with stroke: a functional magnetic resonance imaging study. Am J Phys Med Rehabil 2010;89:177-85
  • Arenillas JF, Sobrino T, Castillo J, Davalos A. The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 2007;9:205-12
  • Jin KL, Mao XO, Nagayama T, et al. Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3’-kinase/Akt signaling by global cerebral ischemia in the rat. Neuroscience 2000;100:713-17
  • Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cerebr Blood Flow Metab 1998;18:887-95
  • Kiprianova I, Schindowski K, von Bohlen und Halbach O, et al. Enlarged infarct volume and loss of BDNF mRNA induction following brain ischemia in mice lacking FGF-2. Exp Neurol 2004;189:252-60
  • Bogousslavsky J, Victor SJ, Salinas EO. Fiblast (trafermin) in acute stroke: results of the European-Australian Phase II/III safety and efficacy trial. Cerebrovasc Dis 2002;14:239-51
  • Wang ZL, Cheng SM, Ma MM. Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia. Neurosci Lett 2008;446:30-5
  • Watanabe T, Okuda Y, Nonoguchi N, et al. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004;24:1205-13
  • Meng Z, Li M, He Q, et al. Ectopic expression of human angiopoietin-1 promotes functional recovery and neurogenesis after focal cerebral ischemia. Neuroscience 2014;267:135-46
  • Lee HJ, Lim IJ, Lee MC, Kim SU. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res 2010;88:3282-94
  • Machalińska A, Kawa M, Pius-Sadowska E, et al. Long-term. neuroprotective effects of NT-4-engineered mesenchymal stem cells injected intravitreally in a mouse model of acute retinal injury. Invest Ophthalmol Vis Sci 2013;54:8292-305
  • Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke 2011;42:2369-75
  • Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain. In: Gage F, Kempermann G, Song H, editors. Adult Neurogenesis. Cold Spring Harbor: NY: Laboratory Press; 2008. 549-70
  • Jozwiak S, Habich A, Kotulska K, et al. Intracerebroventricular transplantation of cord blood-derived neural progenitors in a child with severe global brain ischemic injury. Cell Medicine, Part B of Cell Transplantation 2010;1:71-80
  • Janowski M, Walczak P, Kropiwnicki T, et al. Long-term MRI cell tracking after intraventricular delivery in a patient with global cerebral ischemia and prospects for magnetic navigation of stem cells within the CSF. PLoS One 2014;9:97631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.