2,515
Views
33
CrossRef citations to date
0
Altmetric
Editorial

What is hydroxynorketamine and what can it bring to neurotherapeutics?

, , , &

References

  • Domino EF, Chodoff P, Corssen G. Pharmacologic effects of ci-581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 1965;6:279-91
  • Domino EF. Taming the ketamine tiger. Anesthesiology 2010;113:678-86
  • Hirota K, Lambert DG. Ketamine: new uses for an old drug. Br J Anaesth 2011;107:123-6
  • Li J-H, Vicknasingam B, Cheung Y-w, et al. To use or not to use: an update on licit and illicit ketamine use. Subst Abuse Rehab 2011;2:11-20
  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990;185:1-10
  • Skolnick P, Popik P, Trulias R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 2009;30:563-9
  • Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiat 2000;47:35-54
  • Correll GE, Futter GE. Two case studies of patients with major depressive disorder given low dose (subanesthetic) ketamine infusions. Pain Med 2006;7:92-5
  • Zarate CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant depression. Arch Gen Psychiat 2006;63:856-64
  • Wanderer JP, Rathmell JP. Ketamine as an antidepressant: a brief research history. Anesthesiology 2014;121:8
  • Sabia M, Hirsh RA, Torjman MC, et al. Advances in translational neuropathic research: example of enantioselective pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief in complex regional pain syndrome. Curr Pain Headache Rep 2011;15(3):207-14
  • Green SM, Rothrock SG, Lynch EL, et al. Intramuscular ketamine for pediatric sedation in the Emergency Department: safety profile in 1,022 cases. Ann Emerg Med 1998;31:688-97
  • Leung LY, Baillie TA. Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine. J Med Chem 1986;29:2396-9
  • Adams JD, Baille TA, Trevor AJ, Castagnoli N Jr. Studies on the biotransformation of ketamine: identification of metabolites produced in vitro from rat liver microsomal preparations. Biomed Mass Spec 1981;8:527-38
  • Desta Z, Moaddel R, Ogburn ET, et al. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica 2012;42:1076-87
  • Zarate CA Jr, Brutsche N, Laje G, et al. Relationship of ketamine’s plasma metabolites with response and diagnosis, and side effects in major depression. Biol Psychiatry 2012;72:331-8
  • Moaddel R, Abdrakhmanova G, Kozak J, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharmacol 2013;698:228-34
  • Jirásková-Vanícková J, Ettrich R, Vorlová B, et al. Inhibition of human serine racemase, an emerging target for medicinal chemistry. Curr Drug Targets 2011;12:1037-55
  • Cook S, Galve-Roperh I, Martinez del Pozo A, Rodriguez-Crespo I. Direct calcium binding results in activation of brain serine racemase. J Biol Chem 2002;277:27782-92
  • Wolosker H, Dumin E, Balan L, Foltyn V. D-Amino acids in the brain: D-Serine in neurotransmission and neurodegeneration. FEBS J 2008;275:3514-26
  • Rosenberg D, Artoul S, Segal AC, et al. Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 2013;33:3533-44
  • Sethuraman R, Lee T, Tachibana S. D-Serine regulation: a possible therapeutic approach for central nervous diseases and chronic pain. Mini Rev Med Chem 2009;9:813-19
  • Singh NS, Paul RK, Ramamoorthy A, et al. Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells. Cell Signal 2013;25:2634-45
  • Singh NS, Paul RK, Torjman MC, Wainer IW. Gabapentin and (S)-pregabalin decrease intracellular D-serine concentrations in PC-12 cells. Neurosci Lett 2013;535:90-4
  • Paul RK, Singh NS, Khadeer M, et al. R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin (mTOR) function. Anesthesiology 2014;121:149-59
  • Li N, Lee B, Lui R-J, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959-64
  • Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 2013;73:1189-98

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.