657
Views
79
CrossRef citations to date
0
Altmetric
SPECIAL FOCUS: Alzheimer's Disease Therapy - Review

Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants

, , &

References

  • Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 1999;45(3):358-68
  • Morris JC, Cummings J. Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis 2005;7(3):235-9. discussion 255-262
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med 2010;362(4):329-44
  • Glabe CC. Amyloid accumulation and pathogensis of Alzheimer’s disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcel Biochem 2005;38:167-77
  • Walsh DM, Selkoe DJ. Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 2004;11(3):213-28
  • Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 2009;35(3):352-8
  • Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 1994;36(5):747-51
  • Butterfield DA, Bader Lange ML, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 2010;1801(8):924-9
  • Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 2002;36(12):1307-13
  • Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002;32(11):1050-60
  • Butterfield DA, Stadman ER. Protein oxidation processes in aging brain. In: Paula ST, Bittar EE, editors. Advances in cell aging and gerontology. Elsevier; PA, USA: 1997. p. 161-91
  • Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 2010;19(1):341-53
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997;23(1):134-47
  • Butterfield DA. Oxidative stress in neurodegenerative disorders. Antioxid Redox Signal 2006;8(11-12):1971-3
  • Kim TS, Pae CU, Yoon SJ, et al. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2006;21(4):344-8
  • Perry G, Cash AD, Smith MA. Alzheimer Disease and Oxidative Stress. J Biomed Biotechnol 2002;2(3):120-3
  • Feng Y, Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012;2012:472932
  • Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001;7(12):548-54
  • Cai Z, Zhao B, Ratka A. Oxidative stress and beta-amyloid protein in Alzheimer’s disease. Neuromolecular Med 2011;13(4):223-50
  • Clark TA, Lee HP, Rolston RK, et al. Oxidative Stress and its Implications for Future Treatments and Management of Alzheimer Disease. Int J Biomed Sci 2010;6(3):225-7
  • Butterfield DA, Swomley AM, Sultana R. Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 2013;19(8):823-35
  • Butterfield DA, Galvan V, Lange MB, et al. In vivo oxidative stress in brain of Alzheimer disease transgenic mice: requirement for methionine 35 in amyloid beta-peptide of APP. Free Radic Biol Med 2010;48(1):136-44
  • Li F, Calingasan NY, Yu F, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 2004;89(5):1308-12
  • Nishida Y, Yokota T, Takahashi T, et al. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun 2006;350(3):530-6
  • Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013;2013:316523
  • Ohta S, Ohsawa I. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis 2006;9(2):155-66
  • Ferreiro E, Baldeiras I, Ferreira IL, et al. Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol 2012;2012:735206
  • Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001;21(9):3017-23
  • Saraiva AA, Borges MM, Madeira MD, et al. Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicrosc Cytol 1985;17(3):459-64
  • Zhu X, Perry G, Moreira PI, et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J Alzheimers Dis 2006;9(2):147-53
  • Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 1996;143(1-2):137-42
  • Wyss-Coray T, Rogers J. Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012;2(1):a006346
  • von Bernhardi R. Glial cell dysregulation: a new perspective on Alzheimer disease. Neurotox Res 2007;12(4):215-32
  • Harry GJ, Lefebvre d’Hellencourt C, Bruccoleri A, Schmechel D. Age-dependent cytokine responses: trimethyltin hippocampal injury in wild-type, APOE knockout, and APOE4 mice. Brain Behav Immun 2000;14(4):288-304
  • Ramirez G, Rey S, von Bernhardi R. Proinflammatory stimuli are needed for induction of microglial cell-mediated AbetaPP{244-C} and Abeta-neurotoxicity in hippocampal cultures. J Alzheimers Dis 2008;15(1):45-59
  • von Bernhardi R, Tichauer JE, Eugenin J. Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J Neurochem 2010;112(5):1099-114
  • Kierdorf K, Wang Y, Neumann H. Immune-mediated CNS damage. Results Probl Cell Differ 2010;51:173-96
  • Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005;26(3):349-54
  • Rosales-Corral S, Reiter RJ, Tan DX, et al. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 2010;13(2):193-247
  • Butterfield DA, Poon HF, St Clair D, et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 2006;22(2):223-32
  • Keller JN, Schmitt FA, Scheff SW, et al. Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 2005;64(7):1152-6
  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 2009;1274:66-76
  • Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995;65(5):2146-56
  • Lovell MA, Xie C, Markesbery WR. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 2001;22(2):187-94
  • Lauderback CM, Hackett JM, Huang FF, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem 2001;78(2):413-16
  • Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 1998;19(1):33-6
  • Castegna A, Aksenov M, Aksenova M, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002;33(4):562-71
  • Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002;82(6):1524-32
  • Perluigi M, Sultana R, Cenini G, et al. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteom Clin Appl 2009;3(6):682-93
  • Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006;8(11-12):2021-37
  • Butterfield DA, Perluigi M, Reed T, et al. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012;17(11):1610-55
  • Butterfield DA, Liqing G, Di Domenico F, Robinson RAS. Mass spectrometry and redox proteomics: application in disease. Mass Spectrom Rev 2014;33(4):277-301
  • Santos RX, Correia SC, Zhu X, et al. Nuclear and mitochondrial DNA oxidation in Alzheimer’s disease. Free Radic Res 2012;46(4):565-76
  • Markesbery WR, Lovell MA. DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal 2006;8(11-12):2039-45
  • Lovell MA, Gabbita SP, Markesbery WR. Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF. J Neurochem 1999;72(2):771-6
  • Dildar K, Sinem F, Gokhan E, et al. Serum nitrosative stress levels are increased in Alzheimer disease but not in vascular dementia. Alzheimer Dis Assoc Disord 2010;24(2):194-7
  • Irizarry MC, Yao Y, Hyman BT, et al. Plasma F2A isoprostane levels in Alzheimer’s and Parkinson’s disease. Neurodegener Dis 2007;4(6):403-5
  • Pratico D, Clark CM, Lee VM, et al. Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 2000;48(5):809-12
  • Pratico D, MY Lee V, Trojanowski JQ, et al. Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 1998;12(15):1777-83
  • Sultana R, Baglioni M, Cecchetti R, et al. Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 2013;65c:595-606
  • Sultana R, Mecocci P, Mangialasche F, et al. Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with Alzheimer’s disease: insights into the role of oxidative stress in Alzheimer’s disease and initial investigations into a potential biomarker for this dementing disorder. J Alzheimers Dis 2011;24(1):77-84
  • Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim Biophys Acta 2008;1782(10):549-58
  • Farr SA, Poon HF, Dogrukol-Ak D, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003;84(5):1173-83
  • Koppal T, Drake J, Butterfield DA. In vivo modulation of rodent glutathione and its role in peroxynitrite-induced neocortical synaptosomal membrane protein damage. Biochim Biophys Acta 1999;1453(3):407-11
  • Fu AL, Dong ZH, Sun MJ. Protective effect of N-acetyl-L-cysteine on amyloid beta-peptide-induced learning and memory deficits in mice. Brain Res 2006;1109(1):201-6
  • Pocernich CB, Lange ML, Sultana R, Butterfield DA. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr Alzheimer Res 2011;8(5):452-69
  • Xu Y, Hou XY, Liu Y, Zong YY. Different protection of K252a and N-acetyl-L-cysteine against amyloid-beta peptide-induced cortical neuron apoptosis involving inhibition of MLK3-MKK7-JNK3 signal cascades. J Neurosci Res 2009;87(4):918-27
  • Hsiao YH, Chen PS, Yeh SH, et al. N-acetylcysteine prevents beta-amyloid toxicity by a stimulatory effect on p35/cyclin-dependent kinase 5 activity in cultured cortical neurons. J Neurosci Res 2008;86(12):2685-95
  • Yan CY, Greene LA. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci 1998;18(11):4042-9
  • Adair JC, Knoefel JE, Morgan N. Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 2001;57(8):1515-17
  • Huang QZ, Aluise CD, Joshi G, et al. Potential In vivo amelioration by N-acetyl-L-cysteine of oxidative stress in brain in human double mutant APP/PS-1 knock-in mice: toward therapeutic modulation of mild cognitive impairment. J Neurosci Res 2010;88(12):2618-29
  • Robinson RAS, Joshi G, Huang QZ, et al. Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid beta-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer’s disease. Proteomics 2011;11(21):4243-56
  • Hsiao YH, Kuo JR, Chen SH, Gean PW. Amelioration of social isolation-triggered onset of early Alzheimer’s disease-related cognitive deficit by N-acetylcysteine in a transgenic mouse model. Neurobiol Dis 2012;45(3):1111-20
  • Head E, Murphey HL, Dowling ALS, et al. A combination cocktail improves spatial attention in a canine model of human aging and Alzheimer’s disease. J Alzheimers Dis 2012;32(4):1029-42
  • Xu ZQ, Zhang LQ, Wang Q, et al. Aerobic Exercise Combined with Antioxidative Treatment does not Counteract Moderate- or Mid-Stage Alzheimer-Like Pathophysiology of APP/PS1 Mice. Cns Neurosci Ther 2013;19(10):795-803
  • Gamba P, Guglielmotto M, Testa G, et al. Up-regulation of beta-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine. Aging Cell 2014;13(3):561-72
  • A Clinical Trial of a Vitamin/Nutraceutical Formulation for Alzheimer’s Disease. Available from: http://clinicaltrials.gov/show/NCT01320527
  • NAC-003 P.L.U.S. Program (Progress Through Learning Understanding & Support). Available from: http://clinicaltrials.gov/show/NCT01370954
  • Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2012;37(4):671-9
  • Sultana R, Newman S, Mohmmad-Abdul H, et al. Protective effect of the xanthate, D609, on Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress in primary neuronal cells. Free Radic Res 2004;38(5):449-58
  • Sultana R, Newman SF, Abdul HM, et al. Protective effect of D609 against amyloid-beta1-42-induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 2006;84(2):409-17
  • Joshi G, Sultana R, Perluigi M, Butterfield DA. In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate. Free Radic Biol Med 2005;38(8):1023-31
  • Mohmmad Abdul H, Butterfield DA. Protection against amyloid beta-peptide (1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester: implications for Alzheimer’s disease. Biochim Biophys Acta 2005;1741(1-2):140-8
  • Perluigi M, Joshi G, Sultana R, et al. In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress. Neuroscience 2006;138(4):1161-70
  • Ansari MA, Joshi G, Huang Q, et al. In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 2006;41(11):1694-703
  • Loef M, Schrauzer GN, Walach H. Selenium and Alzheimer’s disease: a systematic review. J Alzheimers Dis 2011;26(1):81-104
  • Akbaraly TN, Hininger-Favier I, Carriere I, et al. Plasma selenium over time and cognitive decline in the elderly. Epidemiology 2007;18(1):52-8
  • Vural H, Demirin H, Kara Y, et al. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer’s disease. J Trace Elem Med Bio 2010;24(3):169-73
  • Rayman MP. Selenium and human health. Lancet 2012;379(9822):1256-68
  • Takemoto AS, Berry MJ, Bellinger FP. Role of selenoprotein P in Alzheimer’s disease. Ethn Dis 2010;20(1 Suppl 1): S1 92-5
  • Ishrat T, Parveen K, Khan MM, et al. Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 2009;1281:117-27
  • Lovell MA, Xiong S, Lyubartseva G, Markesbery WR. Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic Biol Med 2009;46(11):1527-33
  • Gwon AR, Park JS, Park JH, et al. Selenium attenuates A beta production and A beta-induced neuronal death. Neurosci Lett 2010;469(3):391-5
  • van Eersel J, Ke YD, Liu X, et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci USA 2010;107(31):13888-93
  • Corcoran NM, Martin D, Hutter-Paier B, et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 2010;17(8):1025-33
  • Cornelli U. Treatment of Alzheimer’s disease with a cholinesterase inhibitor combined with antioxidants. Neurodegener Dis 2010;7(1-3):193-202
  • Pinton S, da Rocha JT, Zeni G, Nogueira CW. Organoselenium improves memory decline in mice: involvement of acetylcholinesterase activity. Neurosci Lett 2010;472(1):56-60
  • Pinton S, da Rocha JT, Gai BM, et al. Neuroprotector effect of p,p’-methoxyl-diphenyl diselenide in a model of sporadic dementia of Alzheimer’s type in mice: contribution of antioxidant mechanism. Cell Biochem Funct 2011;29(3):235-43
  • Pinton S, Bruning CA, Sartori Oliveira CE, et al. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer’s type model in rats. J Nutr Biochem 2013;24(1):311-17
  • Wiesmann M, Jansen D, Zerbi V, et al. Improved spatial learning strategy and memory in aged Alzheimer AbetaPPswe/PS1dE9 mice on a multi-nutrient diet. J Alzheimers Dis 2013;37(1):233-45
  • van Wijk N, Broersen LM, de Wilde MC, et al. Targeting synaptic dysfunction in Alzheimer’s disease by administering a specific nutrient combination. J Alzheimers Dis 2014;38(3):459-79
  • Broersen LM, Kuipers AA, Balvers M, et al. A specific multi-nutrient diet reduces Alzheimer-like pathology in young adult AbetaPPswe/PS1dE9 mice. J Alzheimers Dis 2013;33(1):177-90
  • Scheltens P, Kamphuis PJ, Verhey FR, et al. Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimers Dement 2010;6(1):1-10. e11
  • Scheltens P, Twisk JW, Blesa R, et al. Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis 2012;31(1):225-36
  • Ritchie CW, Bajwa J, Coleman G, et al. Souvenaid(R): a new approach to management of early Alzheimer’s disease. J Nutr Health Aging 2014;18(3):291-9
  • de Waal H, Stam CJ, Lansbergen MM, et al. The effect of Souvenaid on functional brain network organisation in patients with mild Alzheimer’s disease: a randomised controlled study. PLoS One 2014;9(1):e86558
  • Shah RC, Kamphuis PJ, Leurgans S, et al. The S-Connect study: results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther 2013;5(6):59
  • Cummings JL. Food for Thought: Souvenaid(R) in Mild Alzheimer’s Disease. J Alzheimers Dis 2012. [Epub ahead of print]
  • Cummings JL. Food for thought: Souvenaid in mild Alzheimer’s disease. J Alzheimers Dis 2012;31(1):237-8
  • Mi W, van Wijk N, Cansev M, et al. Nutritional approaches in the risk reduction and management of Alzheimer’s disease. Nutrition 2013;29(9):1080-9
  • Song G, Zhang Z, Wen L, et al. Selenomethionine Ameliorates Cognitive Decline, Reduces Tau Hyperphosphorylation, and Reverses Synaptic Deficit in the Triple Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2014;41(1):85-99
  • Kryscio RJ, Abner EL, Schmitt FA, et al. A randomized controlled Alzheimer’s disease prevention trial’s evolution into an exposure trial: the PREADViSE Trial. J Nutr Health Aging 2013;17(1):72-5
  • Abner EL, Dennis BC, Mathews MJ, et al. Practice effects in a longitudinal, multi-center Alzheimer’s disease prevention clinical trial. Trials 2012;13:217
  • PREADViSE. Available from: www.mc.uky.edu/preadvise/
  • Joshi YB, Pratico D. Vitamin E in aging, dementia, and Alzheimer’s disease. BioFactors 2012;38(2):90-7
  • Sies H, Murphy ME. Role of tocopherols in the protection of biological systems against oxidative damage. J Photochem Photobiol B Biol 1991;8(2):211-18
  • Sheppard AJ, Pennington JAT, Weihrauch JL. Analysis and distribution of vitamin E in Vegetable oils and foods. In: Packer L, Fuchs J, editors. Vitamin E in Health and Disease. Marcel Dekker, Inc; New York, NY, USA: 1993. p. 9-31
  • Ricciarelli R, Zingg JM, Azzi A. Vitamin E: protective role of a Janus molecule. FASEB J 2001;15(13):2314-25
  • Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J 2004;18(2):323-5
  • Pratico D, Clark CM, Liun F, et al. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 2002;59(6):972-6
  • Mangialasche F, Xu W, Kivipelto M, et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol Aging 2012;33(10):2282-90
  • Mangialasche F, Westman E, Kivipelto M, et al. Classification and prediction of clinical diagnosis of Alzheimer’s disease based on MRI and plasma measures of alpha-/gamma-tocotrienols and gamma-tocopherol. J Intern Med 2013;273(6):602-21
  • Butterfield D, Castegna A, Pocernich C, et al. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 2002;13(8):444
  • Perkins AJ, Hendrie HC, Callahan CM, et al. Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. Am J Epidemiol 1999;150(1):37-44
  • Kontush A, Mann U, Arlt S, et al. Influence of vitamin E and C supplementation on lipoprotein oxidation in patients with Alzheimer’s disease. Free Rad Biol Med 2001;31(3):345-54
  • Fillenbaum GG, Kuchibhatla MN, Hanlon JT, et al. Dementia and Alzheimer’s disease in community-dwelling elders taking vitamin C and/or vitamin E. Ann Pharmacother 2005;39(12):2009-14
  • Laurin D, Masaki KH, Foley DJ, et al. Midlife dietary intake of antioxidants and risk of late-life incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol 2004;159(10):959-67
  • Luchsinger JA, Tang MX, Shea S, Mayeux R. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 2003;60(2):203-8
  • Nourhashemi F, Gillette-Guyonnet S, Andrieu S, et al. Alzheimer disease: protective factors. Am J Clin Nutr 2000;71(2):643S-9S
  • Chandra RK. Effect of vitamin and trace-element supplementation on cognitive function in elderly subjects. Nutrition 2001;17(9):709-12
  • Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004;61(1):82-8
  • Onofrj M, Thomas A, Luciano AL, et al. Donepezil versus vitamin E in Alzheimer’s disease: Part 2: mild versus moderate-severe Alzheimer’s disease. Clin Neuropharmacol 2002;25(4):207-15
  • Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 1998;12(3):121-6
  • Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002;287(24):3223-9
  • Harrison FE, Allard J, Bixler R, et al. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice. Nutr Neurosci 2009;12(5):203-18
  • Galasko DR, Peskind E, Clark CM, et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 2012;69(7):836-41
  • Arlt S, Muller-Thomsen T, Beisiegel U, Kontush A. Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res 2012;37(12):2706-14
  • Gutierrez AD, de Serna DG, Robinson I, Schade DS. The response of gamma vitamin E to varying dosages of alpha vitamin E plus vitamin C. Metabolism 2009;58(4):469-78
  • Khanna S, Patel V, Rink C, et al. Delivery of orally supplemented alpha-tocotrienol to vital organs of rats and tocopherol-transport protein deficient mice. Free Rad Biol Med 2005;39(10):1310-19
  • Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007;297(8):842-57
  • Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 1997;336(17):1216-22
  • Dysken MW, Guarino PD, Vertrees JE, et al. Vitamin E and memantine in Alzheimer’s disease: clinical trial methods and baseline data. Alzheimers Dement 2014;10(1):36-44
  • D’Archivio M, Filesi C, Di Benedetto R, et al. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 2007;43(4):348-61
  • Rechner AR, Pannala AS, Rice-Evans CA. Caffeic acid derivatives in artichoke extract are metabolised to phenolic acids in vivo. Free Radic Res 2001;35(2):195-202
  • Saulnier L, Vigouroux J, Thibault JF. Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 1995;272(2):241-53
  • Barone E, Calabrese V, Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 2009;10(2):97-108
  • Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 2014;65:185-95
  • Kikuzaki H, Hisamoto M, Hirose K, et al. Antioxidant properties of ferulic acid and its related compounds. J Agric Food Chem 2002;50(7):2161-8
  • Kanski J, Aksenova M, Stoyanova A, Butterfield DA. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 2002;13(5):273-81
  • Ogiwara T, Satoh K, Kadoma Y, et al. Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 2002;22(5):2711-17
  • Srinivasan M, Sudheer AR, Menon VP. Ferulic Acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 2007;40(2):92-100
  • Castelluccio C, Bolwell GP, Gerrish C, Rice-Evans C. Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant. Biochem J 1996;316(Pt 2):691-4
  • Trombino S, Serini S, Di Nicuolo F, et al. Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene, and ascorbic acid. J Agric Food Chem 2004;52(8):2411-20
  • Yan JJ, Jung JS, Kim TK, et al. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull 2013;36(1):140-3
  • Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 1999;13(9):1007-24
  • Ansari MA, Abdul HM, Joshi G, et al. Protective effect of quercetin in primary neurons against Abeta(1-42): relevance to Alzheimer’s disease. J Nutr Biochem 2009;20(4):269-75
  • Schneider C. Chemistry and biology of vitamin E. Mol Nutr Food Res 2005;49(1):7-30
  • Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 2008;476(2):107-12
  • Palozza P, Barone E, Mancuso C, Picci N. The protective role of carotenoids against 7-keto-cholesterol formation in solution. Mol Cell Biochem 2008;309(1-2):61-8
  • Mancuso C, Barone E. Curcumin in clinical practice: myth or reality? Trends Pharmacol Sci 2009;30(7):333-4
  • Mancuso C, Siciliano R, Barone E. Curcumin and Alzheimer disease: this marriage is not to be performed. J Biol Chem 2011;286(3):le3; author reply le4
  • Mancuso C, Barone E. Therapeutic use of tea derivatives: all that glitters is not gold. Blood 2009;114(11):2359-60
  • Mancuso C, Siciliano R, Barone E, Preziosi P. Natural substances and Alzheimer’s disease: from preclinical studies to evidence based medicine. Biochim Biophys Acta 2012;1822(5):616-24
  • Mori T, Koyama N, Guillot-Sestier MV, et al. Ferulic acid is a nutraceutical beta-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS One 2013;8(2):e55774
  • Sultana R, Ravagna A, Mohmmad-Abdul H, et al. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 2005;92(4):749-58
  • Yan JJ, Cho JY, Kim HS, et al. Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 2001;133(1):89-96
  • Scapagnini G, Butterfield DA, Colombrita C, et al. Ethyl ferulate, a lipophilic polyphenol, induces HO-1 and protects rat neurons against oxidative stress. Antioxid Redox Signal 2004;6(5):811-18
  • Garrido J, Gaspar A, Garrido EM, et al. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie 2012;94(4):961-7
  • Trombino S, Cassano R, Ferrarelli T, et al. Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf B Biointerfaces 2013;109:273-9
  • Trombino S, Cassano R, Muzzalupo R, et al. Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of beta-carotene and alpha-tocopherol. Colloids Surf B Biointerfaces 2009;72(2):181-7
  • Trombino S, Cassano R, Bloise E, et al. Design and synthesis of cellulose derivatives with antioxidant activity. Macromol Biosci 2008;8(1):86-95
  • Cassano R, Trombino S, Muzzalupo R, et al. A novel dextran hydrogel linking trans-ferulic acid for the stabilization and transdermal delivery of vitamin E. Eur J Pharm Biopharm 2009;72(1):232-8
  • Fang L, Kraus B, Lehmann J, et al. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg Med Chem Lett 2008;18(9):2905-9
  • Pi R, Mao X, Chao X, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-beta-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One 2012;7(2):e31921
  • Huang WY, Chao XJ, Ouyang Y, et al. Tacrine-6-ferulic acid, a novel multifunctional dimer against Alzheimer’s disease, prevents oxidative stress-induced neuronal death through activating Nrf2/ARE/HO-1 pathway in HT22 cells. Cns Neurosci Ther 2012;18(11):950-1
  • Raman M, Milestone AN, Walters JR, et al. Vitamin D and gastrointestinal diseases: inflammatory bowel disease and colorectal cancer. Therap Adv Gastroenterol 2011;4(1):49-62
  • Lips P. Vitamin D physiology. Prog Biophys Mol Biol 2006;92(1):4-8
  • Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266-81
  • Nezbedova P, Brtko J. 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action. Endocr Regul 2004;38(1):29-38
  • Brewer LD, Porter NM, Kerr DS, et al. Chronic 1alpha,25-(OH)2 vitamin D3 treatment reduces Ca2+ -mediated hippocampal biomarkers of aging. Cell Calcium 2006;40(3):277-86
  • Harms LR, Burne TH, Eyles DW, McGrath JJ. Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab 2011;25(4):657-69
  • Zittermann A, Gummert JF, Borgermann J. Vitamin D deficiency and mortality. Curr Opin Clin Nutr Metab Care 2009;12(6):634-9
  • Semba RD, Houston DK, Ferrucci L, et al. Low serum 25-hydroxyvitamin D concentrations are associated with greater all-cause mortality in older community-dwelling women. Nutr Res 2009;29(8):525-30
  • Poon HF, Shepherd HM, Reed TT, et al. Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes: mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging 2006;27(7):1020-34
  • Llewellyn DJ, Langa KM, Lang IA. Serum 25-hydroxyvitamin D concentration and cognitive impairment. J Geriatr Psychiatry Neurol 2009;22(3):188-95
  • Przybelski RJ, Binkley NC. Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch Biochem Biophys 2007;460(2):202-5
  • Llewellyn DJ, Lang IA, Langa KM, et al. Vitamin D and risk of cognitive decline in elderly persons. Arch Intern Med 2010;170(13):1135-41
  • Annweiler C, Llewellyn DJ, Beauchet O. Low serum vitamin D concentrations in Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2013;33(3):659-74
  • Mizwicki MT, Liu G, Fiala M, et al. 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. J Alzheimers Dis 2013;34(1):155-70
  • Brewer LD, Thibault V, Chen KC, et al. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001;21(1):98-108
  • Garcion E, Sindji L, Leblondel G, et al. 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 1999;73(2):859-66
  • Nissou MF, Brocard J, El Atifi M, et al. The transcriptomic response of mixed neuron-glial cell cultures to 1,25-dihydroxyvitamin d3 includes genes limiting the progression of neurodegenerative diseases. J Alzheimers Dis 2013;35(3):553-64
  • Moon M, Song H, Hong HJ, et al. Vitamin D-binding protein interacts with Abeta and suppresses Abeta-mediated pathology. Cell Death Differ 2013;20(4):630-8
  • Annweiler C, Fantino B, Schott AM, et al. Vitamin D insufficiency and mild cognitive impairment: cross-sectional association. Eur J Neurol 2012;19(7):1023-9
  • Keeney JT, Forster S, Sultana R, et al. Dietary vitamin D deficiency in rats from middle to old age leads to elevated tyrosine nitration and proteomics changes in levels of key proteins in brain: implications for low vitamin D-dependent age-related cognitive decline. Free Rad Biol Med 2013;65:324-34
  • Stein MS, Scherer SC, Ladd KS, Harrison LC. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J Alzheimers Dis 2011;26(3):477-84
  • Annweiler C, Fantino B, Parot-Schinkel E, et al. Alzheimer’s disease--input of vitamin D with mEmantine assay (AD-IDEA trial): study protocol for a randomized controlled trial. Trials 2011;12:230
  • Leon J, Acuna-Castroviejo D, Sainz RM, et al. Melatonin and mitochondrial function. Life Sci 2004;75(7):765-90
  • Tan DX, Manchester LC, Hardeland R, et al. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res 2003;34(1):75-8
  • Tan DX, Chen LD, Poeggeler B, et al. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocrine J 1993;1:57-60
  • Manchester LC, Tan DX, Reiter RJ, et al. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 2000;67(25):3023-9
  • Reiter RJ, Tan DX. Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci 2002;957:341-4
  • Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002;2(2):181-97
  • Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004;36(1):1-9
  • Reiter RJ, Cabrera J, Sainz RM, et al. Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington’s disease, Alzheimer’s disease and parkinsonism. Ann N Y Acad Sci 1999;890:471-85
  • Zhou JN, Liu RY, Kamphorst W, et al. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003;35(2):125-30
  • Pappolla MA, Sos M, Omar RA, et al. Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 1997;17(5):1683-90
  • Cheng Y, Feng Z, Zhang QZ, Zhang JT. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 2006;27(2):129-39
  • Matsubara E, Bryant-Thomas T, Pacheco Quinto J, et al. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem 2003;85(5):1101-8
  • Feng Z, Chang Y, Cheng Y, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 2004;37(2):129-36
  • Gunasingh MJ, Philip JE, Ashok BS, et al. Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism. Life Sci 2008;83(3-4):96-102
  • Ling ZQ, Tian Q, Wang L, et al. Constant illumination induces Alzheimer-like damages with endoplasmic reticulum involvement and the protection of melatonin. J Alzheimers Dis 2009;16(2):287-300
  • Yang X, Yang Y, Fu Z, et al. Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 2011;25(8):1118-25
  • Garcia-Mesa Y, Gimenez-Llort L, Lopez LC, et al. Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 2012;33(6):1124 e1113-1129
  • Bano Otalora B, Popovic N, Gambini J, et al. Circadian system functionality, hippocampal oxidative stress, and spatial memory in the APPswe/PS1dE9 transgenic model of Alzheimer disease: effects of melatonin or ramelteon. Chronobiol Int 2012;29(7):822-34
  • Fernandez-Bachiller MI, Perez C, Campillo NE, et al. Tacrine-melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem 2009;4(5):828-41
  • Dowling GA, Burr RL, Van Someren EJ, et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 2008;56(2):239-46
  • Gehrman PR, Connor DJ, Martin JL, et al. Melatonin fails to improve sleep or agitation in double-blind randomized placebo-controlled trial of institutionalized patients with Alzheimer disease. Am J Geriatr Psychiatry 2009;17(2):166-9
  • Moreira PI, Zhu X, Wang X, et al. Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 2010;1802(1):212-20
  • Dumont M, Lin MT, Beal MF. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer’s disease. J Alzheimers Dis 2010;20(Suppl 2):S633-43
  • Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 2012;1822(5):639-49
  • Su B, Wang X, Bonda D, et al. Abnormal mitochondrial dynamics – a novel therapeutic target for Alzheimer’s disease? Mol Neurobiol 2010;41(2-3):87-96
  • Swomley AM, Forster S, Keeney JT, et al. Abeta, oxidative stress in Alzheimer disease: Evidence based on proteomics studies. Biochim Biophys Acta 2014;1842(8):1248-57
  • de la Monte SM, Tong M. Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 2014;88(4):548-59
  • Manczak M, Mao P, Calkins MJ, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 2010;20(Suppl 2):S609-31
  • Beal MF. Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 2004;36(4):381-6
  • Yang X, Yang Y, Li G, et al. Coenzyme Q10 attenuates beta-amyloid pathology in the aged transgenic mice with Alzheimer presenilin 1 mutation. J Mol Neurosci 2008;34(2):165-71
  • Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007;47:629-56
  • Sheu SS, Nauduri D, Anders MW. Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 2006;1762(2):256-65
  • James AM, Sharpley MS, Manas AR, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 2007;282(20):14708-18
  • Dhanasekaran A, Kotamraju S, Kalivendi SV, et al. Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 2004;279(36):37575-87
  • McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2011;31(44):15703-15
  • Ng LF, Gruber J, Cheah IK, et al. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Rad Biol Med 2014;71:390-401
  • Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 2010;59(4-5):290-4
  • Hardas SS, Sultana R, Clark AM, et al. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain. Redox Biol 2013;1(1):80-5
  • Moreira PI, Harris PL, Zhu X, et al. Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J Alzheimers Dis 2007;12(2):195-206
  • Quinn JF, Bussiere JR, Hammond RS, et al. Chronic dietary alpha-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging 2007;28(2):213-25
  • Poon HF, Farr SA, Thongboonkerd V, et al. Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochem Int 2005;46(2):159-68
  • Abdul HM, Butterfield DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Rad Biol Med 2007;42(3):371-84
  • Shenk JC, Liu J, Fischbach K, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J Neurol Sci 2009;283(1-2):199-206
  • Bianchetti A, Rozzini R, Trabucchi M. Effects of acetyl-L-carnitine in Alzheimer’s disease patients unresponsive to acetylcholinesterase inhibitors. Curr Med Res Opin 2003;19(4):350-3
  • Montgomery SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 2003;18(2):61-71
  • Lipoic Acid and Omega-3 Fatty Acids for Alzheimer’s Disease. Available from: http://clinicaltrials.gov/show/NCT01058941
  • Szeto HH. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 2006;8(3):E521-31
  • Szeto HH. Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann N Y Acad Sci 2008;1147:112-21
  • Thomas DA, Stauffer C, Zhao K, et al. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol 2007;18(1):213-22
  • Calkins MJ, Manczak M, Mao P, et al. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 2011;20(23):4515-29
  • Calkins MJ, Reddy PH. Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer’s disease mice: implications for impaired mitochondrial biogenesis and synaptic damage. Biochim Biophys Acta 2011;1812(9):1182-9
  • Reddy TP, Manczak M, Calkins MJ, et al. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31. Int J Environ Res Public Health 2011;8(1):203-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.