743
Views
72
CrossRef citations to date
0
Altmetric
Review

Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation

, &

References

  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527:633-9
  • Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulat 2009;2:215-28
  • Frohlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron 2010;67:129-43
  • Deans JK, Powell AD, Jefferys JGR. Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol-London 2007;583:555-65
  • Herrmann CS, Rach S, Neuling T, Struber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Front Human Neurosci 2013;7:279
  • Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nature Rev Neurosci 2010;11:100-13
  • Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 2012;14:345-67
  • Nitsche MA, Cohen LG, Wassermann EM, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulat 2008;1:206-23
  • Nitsche MA, Paulus W. Transcranial direct current stimulation–update 2011. Restorative Neurol neurosci 2011;29:463-92
  • Berlim MT, Van den Eynde F, Daskalakis ZJ. Clinical utility of transcranial direct current stimulation (tDCS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. J Psychiatr Res 2013;47:1-7
  • Monti A, Ferrucci R, Fumagalli M, et al. Transcranial direct current stimulation (tDCS) and language. J Neurol Neurosurg Psychiat 2013;84:832-42
  • Brunoni AR, Fregni F, Pagano RL. Translational research in transcranial direct current stimulation (tDCS): a systematic review of studies in animals. Rev neurosci 2011;22:471-81
  • Kalu UG, Sexton CE, Loo CK, Ebmeier KP. Transcranial direct current stimulation in the treatment of major depression: a meta-analysis. Psychological Med 2012;42:1791-800
  • Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol 2011;24:590-6
  • Antal A, Kincses TZ, Nitsche MA, et al. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Visual Sci 2004;45:702-7
  • Antal A, Terney D, Poreisz C, Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci 2007;26:2687-91
  • Song JJ, Vanneste S, Van de Heyning P, De Ridder D. Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis. ScientificWorld J 2012;2012:427941
  • Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A. Treatment of depression with transcranial direct current stimulation (tDCS): a review. Experimental Neurol 2009;219:14-19
  • Benninger DH, Lomarev M, Lopez G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010;81:1105-11
  • Fregni F, Boggio PS, Santos MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 2006;21:1693-702
  • Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. Arch Neurol 2008;65:1571-6
  • Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 2011;21:475-85
  • Nacher V, Ledberg A, Deco G, Romo R. Coherent delta-band oscillations between cortical areas correlate with decision making. Proc Natl Acad Sci USA 2013;110:15085-90
  • Molle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Progress Brain Res 2011;193:93-110
  • Uhlhaas PJ, Singer W. Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 2012;75:963-80
  • Spencer KM. Baseline gamma power during auditory steady-state stimulation in schizophrenia. Front Human Neurosci 2011;5:190
  • Kikuchi M, Hashimoto T, Nagasawa T, et al. Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophrenia Res 2011;130:187-94
  • Sun L, Grutzner C, Bolte S, et al. Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: evidence for dysfunctional network activity in frontal-posterior cortices. J Neurosci 2012;32:9563-73
  • Kikuchi M, Yoshimura Y, Hiraishi H, et al. Reduced long-range functional connectivity in young children with autism spectrum disorder. Soc Cogn Affect Neurosci 2014. [Epub ahead of print]
  • Feurra M, Bianco G, Santarnecchi E, et al. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 2011;31:12165-70
  • Zaghi S, de Freitas Rezende L, de Oliveira LM, et al. Inhibition of motor cortex excitability with 15Hz transcranial alternating current stimulation (tACS). Neurosci Lett 2010;479:211-14
  • Wach C, Krause V, Moliadze V, et al. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res 2013;241:1-6
  • Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 2009;19:1637-41
  • Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PloS One 2010;5:e13766
  • Voss U, Holzmann R, Hobson A, et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci 2014;17:810-12
  • Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Human Neurosci 2013;7:161
  • Feurra M, Pasqualetti P, Bianco G, et al. State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters. J Neurosci 2013;33:17483-9
  • Buzsáki G. Rhythms of the brain. Oxford University Press; Oxford ; New York: 2006
  • Wach C, Krause V, Moliadze V, et al. The effect of 10 Hz transcranial alternating current stimulation (tACS) on corticomuscular coherence. Front Human Neurosci 2013. 7:511
  • Schutter DJ, Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimulat 2011;4:97-103
  • Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010;167:748-51
  • Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010;167:748-51
  • Morris SE, Cuthbert BN. Research Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci 2012;14:29-37
  • Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 2013;11:126
  • Workshop proceedings of the NIMH research domain criteria (RDoC) project. Cognitive Systems; Rockville: 2010
  • Woltering S, Jung J, Liu Z, Tannock R. Resting state EEG oscillatory power differences in ADHD college students and their peers. Behav Brain Functions 2012;8:60
  • Mazaheri A, Fassbender C, Coffey-Corina S, et al. Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents. Biol Psychiatry 2014;76:422-9
  • Laczo B, Antal A, Niebergall R, et al. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimulat 2012;5:484-91
  • Peers PV, Ludwig CJ, Rorden C, et al. Attentional functions of parietal and frontal cortex. Cereb Cortex 2005;15:1469-84
  • Buschman TJ, Miller EK. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007;315:1860-2
  • Joundi RA, Jenkinson N, Brittain JS, et al. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 2012;22:403-7
  • Martinovic J, Busch NA. High frequency oscillations as a correlate of visual perception. International J Psychophysiol 2011;79:32-8
  • Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Human Neurosci 2010;4:186
  • Palva S, Palva JM. New vistas for alpha-frequency band oscillations. Trends Neurosci 2007;30:150-8
  • Uhlhaas PJ, Haenschel C, Nikolic D, Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 2008;34:927-43
  • Basar E, Guntekin B. A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 2008;1235:172-93
  • Haig AR, Gordon E, De Pascalis V, et al. Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol 2000;111:1461-8
  • Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev Neurosci 2001;2:704-16
  • Struber D, Rach S, Trautmann-Lengsfeld SA, et al. Antiphasic 40 hz oscillatory current stimulation affects bistable motion perception. Brain Topogr 2014;27:158-71
  • Romei V, Gross J, Thut G. On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 2010;30:8692-7
  • Ergenoglu T, Demiralp T, Bayraktaroglu Z, et al. Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cognitive Brain Res 2004;20:376-83
  • Worden MS, Foxe JJ, Wang N, Simpson GV. Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 2000;20:RC63
  • Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol 2006;95:3844-51
  • Brignani D, Ruzzoli M, Mauri P, Miniussi C. Is transcranial alternating current stimulation effective in modulating brain oscillations? PloS One 2013;8:e56589
  • Helfrich RF, Schneider TR, Rach S, et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 2014;24:333-9
  • Kanai R, Chaieb L, Antal A, et al. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 2008;18:1839-43
  • Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol 2010;121:1551-4
  • Schwiedrzik CM. Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integrative Neurosci 2009;3:6
  • Schutter DJ, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol 2010;121:1080-4
  • Neuling T, Rach S, Wagner S, et al. Good vibrations: oscillatory phase shapes perception. Neuroimage 2012;63:771-8
  • Hanslmayr S, Aslan A, Staudigl T, et al. Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 2007;37:1465-73
  • Mathewson KE, Lleras A, Beck DM, et al. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2011;2
  • Palva S, Palva JM. New vistas for α-frequency band oscillations. Trends Neurosci 2007;30:150-8
  • Rajagovindan R, Ding M. From prestimulus alpha oscillation to visual-evoked response: an inverted-U function and its attentional modulation. J Cogn Neurosci 2011;23:1379-94
  • Feurra M, Paulus W, Walsh V, Kanai R. Frequency specific modulation of human somatosensory cortex. Front Psychol 2011;2:13
  • Workshop proceedings of the NIMH research domain criteria (RDoC) project. Working memory; Rockville: 2010
  • Todd JJ, Marois R. Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 2004;428:751-4
  • Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999;283:1657-61
  • Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 2003;7:415-23
  • Kawasaki M, Kitajo K, Yamaguchi Y. Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. Eur J Neurosci 2010;31:1683-9
  • Wu X, Chen X, Li Z, et al. Binding of verbal and spatial information in human working memory involves large-scale neural synchronization at theta frequency. Neuroimage 2007;35:1654-62
  • Mizuhara H, Yamaguchi Y. Human cortical circuits for central executive function emerge by theta phase synchronization. Neuroimage 2007;36:232-44
  • Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001;24:167-202
  • Guntekin B, Saatci E, Yener G. Decrease of evoked delta, theta and alpha coherences in Alzheimer patients during a visual oddball paradigm. Brain Res 2008;1235:109-16
  • Polania R, Nitsche MA, Korman C, et al. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 2012;22:1314-18
  • Meiron O, Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin Neurophysiol 2014;125:77-82
  • Jausovec N, Jausovec K, Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta psychologica 2013;146C:1-6
  • Jausovec N, Jausovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol Psychol 2013;96C:42-7
  • Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron 2004;44:121-33
  • Stickgold R. Sleep-dependent memory consolidation. Nature 2005;437:1272-8
  • Heckers S, Rauch SL, Goff D, et al. Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nat Neurosci 1998;1:318-23
  • Lu W, Goder R. Does abnormal non-rapid eye movement sleep impair declarative memory consolidation?: disturbed thalamic functions in sleep and memory processing. Sleep Med Rev 2012;16:389-94
  • Wamsley EJ, Tucker MA, Shinn AK, et al. Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 2012;71:154-61
  • Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 2006;444:610-13
  • Marshall L, Kirov R, Brade J, et al. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PloS One 2011;6:e16905
  • Eggert T, Dorn H, Sauter C, et al. No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimulat 2013;6:938-45
  • Prehn-Kristensen A, Munz M, Goder R, et al. Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls. Brain Stimulat 2014; In Press
  • Antonenko D, Diekelmann S, Olsen C, et al. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur J Neurosci 2013;37:1142-51
  • Kirov R, Weiss C, Siebner HR, et al. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci USA 2009;106:15460-5
  • Groppa S, Bergmann TO, Siems C, et al. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neurosci 2010;166:1219-25
  • Doesburg SM, Vinette SA, Cheung MJ, Pang EW. Theta-modulated gamma-band synchronization among activated regions during a verb generation task. Front psychol 2012;3:195
  • Horton C, D’Zmura M, Srinivasan R. Suppression of competing speech through entrainment of cortical oscillations. J Neurophysiol 2013;109:3082-93
  • Luo H, Poeppel D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 2007;54:1001-10
  • Hermes D, Miller KJ, Vansteensel MJ, et al. Cortical theta wanes for language. NeuroImage 2014;85(Pt 2):738-48
  • Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Pascual-Leone A. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology 2013;64:566-78
  • Iyer MB, Mattu U, Grafman J, et al. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 2005;64:872-5
  • Fertonani A, Rosini S, Cotelli M, et al. Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 2010;208:311-18
  • Sparing R, Dafotakis M, Meister IG, et al. Enhancing language performance with non-invasive brain stimulation–a transcranial direct current stimulation study in healthy humans. Neuropsychologia 2008;46:261-8
  • Monti A, Cogiamanian F, Marceglia S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 2008;79:451-3
  • O’Donnell BF, Hetrick WP, Vohs JL, et al. Neural synchronization deficits to auditory stimulation in bipolar disorder. Neuroreport 2004;15:1369-72
  • Oda Y, Onitsuka T, Tsuchimoto R, et al. Gamma band neural synchronization deficits for auditory steady state responses in bipolar disorder patients. PloS One 2012;7:e39955
  • Solomon M, Ozonoff SJ, Cummings N, Carter CS. Cognitive control in autism spectrum disorders. International J Dev Neurosci 2008;26:239-47
  • Solomon M, Ozonoff SJ, Ursu S, et al. The neural substrates of cognitive control deficits in autism spectrum disorders. Neuropsychologia 2009;47:2515-26
  • Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155-68
  • Santarnecchi E, Polizzotto NR, Godone M, et al. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol 2013;23:1449-53
  • Pahor A, Jausovec N. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. International J Psychophysiol 2014;93:322-31
  • McClure SM, Laibson DI, Loewenstein G, Cohen JD. Separate neural systems value immediate and delayed monetary rewards. Science 2004;306:503-7
  • Lee D, Seo H. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex. Ann N Y Acad Sci 2007;1104:108-22
  • Sela T, Kilim A, Lavidor M. Transcranial alternating current stimulation increases risk-taking behavior in the balloon analog risk task. Front Neurosci 2012;6:22
  • Kalia SK, Sankar T, Lozano AM. Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol 2013;26:374-80
  • Li Q, Qian ZM, Arbuthnott GW, et al. Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA Neurol 2014;71:100-3
  • Reato D, Rahman A, Bikson M, Parra LC. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 2010;30:15067-79
  • Ali MM, Sellers KK, Frohlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci 2013;33:11262-75
  • Frohlich F, Schmidt SL. Rational design of transcranial current stimulation (TCS) through mechanistic insights into cortical network dynamics. Front Hum Neurosci 2013;7:804
  • Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications 2013;4:1376
  • Berenyi A, Belluscio M, Mao D, Buzsaki G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science 2012;337:735-7
  • Heck CN, King-Stephens D, Massey AD, et al. Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 2014;55:432-41
  • Brittain JS, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013;23:436-40
  • Boyle M, Frohlich F. EEG feedback-controlled transcranial alternating current stimulation. 2013. 140-3
  • Minhas P, Bansal V, Patel J, et al. Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J Neurosci Methods 2010;190:188-97
  • Datta A, Truong D, Minhas P, et al. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry 2012;3:91
  • Kuo HI, Bikson M, Datta A, et al. Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study. Brain Stimulat 2013;6:644-8
  • Datta A, Bansal V, Diaz J, et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain stimulat 2009;2:201-7. 207 e201
  • Schmidt S, Iyengar A, Foulser A, et al. Endogenous cortical oscillations constrain neuromodulation by weak electric fields. Brain Stimulat 2014; In Press
  • Kutchko KM, Frohlich F. Emergence of metastable state dynamics in interconnected cortical networks with propagation delays. PLoS Computational Biol 2013;9:e1003304
  • Batsikadze G, Moliadze V, Paulus W, et al. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 2013;591(Pt 7):1987-2000
  • Wolkenstein L, Plewnia C. Amelioration of cognitive control in depression by transcranial direct current stimulation. Biol Psychiatry 2013;73:646-51
  • Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010;90:1195-268
  • Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007;17:103-11
  • Kindler J, Hubl D, Strik WK, et al. Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol 2011;122:1179-82
  • Rosanova M, Casali A, Bellina V, et al. Natural frequencies of human corticothalamic circuits. J Neurosci 2009;29:7679-85
  • Fuggetta G, Noh NA. A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders. Exp Neurol 2013;245:87-95
  • Barr MS, Farzan F, Arenovich T, et al. The effect of repetitive transcranial magnetic stimulation on gamma oscillatory activity in schizophrenia. PloS One 2011;6:e22627
  • Schutter DJ, van Honk J, Laman M, et al. Increased sensitivity for angry faces in depressive disorder following 2 weeks of 2-Hz repetitive transcranial magnetic stimulation to the right parietal cortex. Int J Neuropsychopharmacol 2010;13:1155-61
  • Schutter DJ, Putman P, Hermans E, van Honk J. Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects. Neurosci Lett 2001;314:13-16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.