78
Views
23
CrossRef citations to date
0
Altmetric
Review

Novel therapies for meningiomas

&
Pages 1447-1464 | Published online: 10 Jan 2014

References

  • Lamszus K. Meningioma pathology, genetics and biology.J. Neuropath. Exp. Neurol.63, 275–286 (2004).
  • Bondy M, Ligon BL. Epidemiology and etiology of intracranial meningiomas: a review. J. NeuroOncol.29(3), 197–205 (1996).
  • DeMonte F, Marmor E, Al-Mefty O. Meningiomas. In:Brain Tumors 2nd Edition). Kaye AH, Laws ER Jr (Eds). Churchill Livingstone, London, UK, 719–750 (2001).
  • Louis DN, Scheithauer BW, Budka H et al. Meningeal tumors. In: WHO Classification of Tumors. Tumors of the Nervous System. Kleihues P, Cavenee WK (Eds). IARC, Lyon, France, 175–196 (2000).
  • Whittle IR, Smith C, Navoo P, Collie D. Meningiomas. Lancet363(9420), 1535–1543 (2004).
  • Perry A, Gutmann DH, Reifenberger G. Molecular pathogenesis of meningiomas. J. NeuroOncol.70, 183–202 (2004).
  • Ashgarian B, Chen YJ, Patronas NJ et al. Meningiomas may be a component of multiple endocrine neoplasia type. Clin. Cancer Res.10, 869–880 (2004).
  • Perry A, Stafford SL, Scheithauer BW et al. Meningioma grading: an analysis of histologic parameters. Am. J. Surg. Pathol.21, 1455–1465 (1997).
  • Amatya VJ, Takeshima Y, Sugiyama K et al. Immunohistochemiscal study of Ki-67 (MIB-1), p53 protein, p21WAF1 and p27KIP1 expression in benign, atypical and anaplastic meningiomas. Human Pathol.32, 970–975 (2001).
  • Nakasu S, Li DH, Okabe L et al. Significance of MIB-1 staining indices in meningiomas. Am. J. Surg. Pathol.25, 472–478 (2001).
  • Sanson M, Cornu P. Biology of meningiomas. Acta Neurochir.142, 493–505 (2000).
  • Zang KD. Meningioma: a cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet. Cell. Genet.93, 207–220 (2001).
  • Evans JJ, Jeun SS, Lee JH et al. Molecular alterations in the neurofibromatosis type 2 gene and its protein rarely occurring in meningothelial meningiomas. J. Neurosurg.94, 111–117 (2001).
  • Perry A, Cai DX, Scheithauer BW et al. Merlin, DAL-1, and progesterone receptor expression in clinicopathological subsets of meningioma: a correlative immunohistochemical study of 175 cases. J. Neuropathol. Exp. Neurol.59, 872–879 (2000).
  • Watson MA, Gutmann DH, Peterson K et al. Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. Am. J. Pathol.161(2), 665–672 (2002).
  • Wrobel G, Roerig P, Kokocinski F et al. Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int. J. Cancer114(2), 249–256 (2005).
  • Ragel B, Jensen RL. New approaches for the treatment of refractory meningiomas. Cancer Control10(2), 148–158 (2003).
  • D’Ambrosio AL, Bruce JN. Treatment of meningioma: an update. Curr. Neurol. Neurosci. Rep.3(3), 206–214 (2003).
  • Chamberlain MC, Blumenthal DT. Intracranial meningiomas: diagnosis and treatment. Expert Rev. Neurother.4(4), 641–648 (2004).
  • McMullen KP, Stieber VW. Meningioma: current treatment options and future directions. Curr. Treat. Options Oncol.5(6), 499–509 (2004).
  • Chamberlain MC. Intracerebral Meningiomas. Curr. Treat. Options Neurol.6(4), 297–305 (2004).
  • Drummond KJ, Zhu JJ, Black PM. Meningiomas: updating basic science, management, and outcome. Neurologist10(3), 113–130 (2004).
  • Modha A, Gutin PH. Diagnosis and treatment of atypical and anaplastic meningiomas: a review. Neurosurgery57(3), 538–550 (2005)
  • Goldsmith B, McDermott MW. Meningioma. Neurosurg. Clin. N. Am.17(2), 111–120 (2006).
  • Mirimanoff RO, Dosoretz DE, Linggood RM et al. Meningioma: analysis of recurrence and progression following neurosurgical resection. J. Neurosurg.62, 18–24 (1985).
  • Stafford SL, Perry A, Suman VJ et al. Primary resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin. Proc.73, 936–942 (1998).
  • Kallio M, Sankila R, Hakulinen T et al. Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery31, 2–12 (1992).
  • Maor MH. Radiotherapy for meningiomas. J. NeuroOncol.29(3), 261–267 (1996).
  • Taylor BW, Marcus RB, Friedman WA. The meningioma controversy: post-operative radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.15, 299–304 (1988).
  • Mirabell R, Linggood RM, de la Monte S et al. The role of radiation therapy in the treatment of subtotally resected benign meningiomas. J. NeuroOncol.113, 157–164 (1992).
  • Goldsmith BJ, Wara WM, Wilson CB et al. Prospective irradiation for subtotally resected meningiomas: a retrospective analysis of 140 patients treated from 1967–1990.J. Neurosurg.80, 195–201 (1994).
  • Milosevic MF, Frost PJ, Laperriere NJ et al. Radiotherapy for atypical or malignant intracranial meningioma. Int. J. Radiat. Incol. Biol. Phys.34, 817–822 (1996).
  • Stieber VW, Munley M. Central nervous system tumors. In:Intensity-Modulated Radiation therapy (IMRT): A Clinical Perspective. Mundt AJ, Roeske JC (Eds). BC Decker Inc., Ontario, Canada (2005).
  • Hug EB, De Vries A, Thornton AF et al. Management of atypical and malignant meningiomas; role of high dose, 3D conformal radiation therapy. J. NeuroOncol.48, 151–160 (2000).
  • Konziolka D, Flickinger JC, Perez B. Judicious resection and/or radiosurgery for parasagittal meningiomas: outcomes from a multicenter review. Neurosurgery43, 405–413 (1998).
  • Kondziolka D, Levy EI, Niranjan A et al. Long-term outcomes after meningioma radiosurgery: physician and patient perspectives. J. Neurosurg.91(1), 44–50 (1999).
  • Hakim R, Alexander E, Loeffler J et al. Results of linear accelerator-based radiosurgery for intracranial meningiomas. Neurosurgery43, 446–453 (1998).
  • Harris AE, Lee JY, Omalu B et al. The effect of radiosurgery during management of aggressive meningiomas. Surg. Neurol.60(4), 298–305 (2003).
  • Pollock BE, Stafford SL, Utter A et al. Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade I resection for patients with small-to-medium size meningiomas. Int. J. Radiat. Oncol. Biol. Phys.55, 1000–1005 (2003).
  • Stafford SL, Pollock BE, Foote RL et al. Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery49, 1029–1037 (2001).
  • Turbin RE, Thompson CR, Kennerdell JS et al. A long-term visual outcome comparison in patients with optic nerve sheath meningioma managed with observation, surgery, radiotherapy, or surgery and radiotherapy. Ophthalmology109, 890–899 (2002).
  • Narayan S, Cornblath WT, Sandler HM et al. Preliminary visual outcomes after three-dimensional conformal radiation therapy for optic nerve sheath meningioma. Int. J. Radiat. Oncol. Biol. Phys.56, 537–543 (2003).
  • Flickinger JC, Kondziolka D, Maitz AH et al. Gamma-knife radiosurgery of imaging-diagnosed intracranial meningioma. Int. J. Radiat. Oncol. Biol. Phys.56, 801–806 (2003).
  • Chamberlain MC. Adjuvant combined modality therapy for malignant meningiomas.J. Neurosurg.84(5), 733–736 (1996).
  • Kyritsis AP. Chemotherapy for meningiomas. J. NeuroOncol.29(3), 269–272 (1996).
  • Herscovici Z, Rappaport Z, Sulkes J et al. Natural history of conservatively treated meningiomas. Neurology63, 1133–1134 (2004).
  • Zeidman LA, Ankenbrandt WJ, Paleologos N, Vick NA. Analysis of growth rate in non-operated meningiomas. Neurology66 (Suppl. 2), A400 (2006) (Abstr EV7.004).
  • Travitzky M, Libson E, Nemirovsky I et al. Doxil-induced regression of pleuro-pulmonary metastases in a patient with malignant meningioma. Anticancer Drugs14(3), 247–250 (2003).
  • Schrell UM, Ritting MG, Anders M et al. Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J. Neurosurg.86(5), 845–852 (1997).
  • Schrell UM, Ritting MG, Anders M et al. Hydroxyurea for treatment of unresectable and recurrent meningiomas II. Decrease in the size of meningiomas in patients treated with hydroxyurea. J. Neurosurg.86(5), 840–844 (1997).
  • Mason WP, Gentili F, Macdonald DR et al. Stabilization of disease progression by hydroxyurea in patients with recurrent or unresectable meningioma. J. Neurosurg.97(2), 341–346 (2002).
  • Newton HB, Scott SR, Volpi C. Hydroxyurea chemotherapy for meningiomas: enlarged cohort with extended follow-up. Br. J. Neurosurg.18(5), 495–499 (2004).
  • Rosenthal MA, Ashley DL, Cher L. Treatment of high risk or recurrent meningiomas with hydroxyurea. J. Clin. Neurosci.9(2), 156–158 (2002).
  • Loven D, Hardoff R, Sever ZB et al. Non-resectable slow-growing meningiomas treated by hydroxyurea. J. NeuroOncol.67(1–2), 221–226 (2004).
  • Cusimano MD. Hydroxyurea for treatment of meningioma. J. Neurosurg.88(5), 938–939 (1998).
  • Hahn BM, Schrell UM, Sauer R et al. Prolonged oral hydroxyurea and concurrent 3d-conformal radiation in patients with progressive or recurrent meningioma: results of a pilot study. J. NeuroOncol.74(2), 157–165 (2005).
  • Kaba SE, DeMonte F, Bruner JM et al. The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery40(2), 271–275 (1997).
  • Muhr C, Gudjonsson O, Lilja A et al. Meningioma treated with interferon-alpha, evaluated with [(11)C]-L-methionine positron emission tomography. Clin. Cancer Res.7(8), 2269–2276 (2001).
  • Chamberlain MC, Tsao-Wei DD, Groshen S. Temozolomide for treatment-resistant recurrent meningioma. Neurology62(7), 1210–1212 (2004).
  • Chamberlain MC, Tsao-Wei DD, Groshen S. Salvage chemotherapy with CPT-11 for recurrent meningioma. J. NeuroOncol.78(3), 271–276 (2006).
  • Mocellin S, Rossi CR, Brandes A, Nitti D. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches. Cancer Treat. Rev.32(1), 9–27 (2006).
  • Johnson M, Toms S. Mitogenic signal transduction pathways in meningiomas: novel targets for meningioma chemotherapy? J. Neuropathol. Exp. Neurol.64(12), 1029–1036 (2005).
  • McCutcheon IE, Friend KE, Gerdes TM et al. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth.J. Neurosurg.92(2), 306–314 (2000).
  • Kalamarides M, Niwa-Kawakita M, Leblois H et al. NF2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev.16, 1060–1065 (2002).
  • Kerbel R S, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat. Rev. Cancer4(6), 423–436 (2004).
  • Browder T, Butterfield CE, Kraling BM et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res.60(7), 1878–1886 (2000).
  • Bocci G, Francia G, Man S et al. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl Acad. Sci. USA100(22), 12917–12922 (2003).
  • Klement G, Baruchel S, Rak J et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest.105(8), R15–R24 (2000).
  • Bertolini F, Paul S, Mancuso P et al. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res.63(15), 4342–4346 (2003).
  • Kieran MW, Turner CD, Rubin JB et al. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J. Pediatr. Hematol. Oncol.27(11), 573–581 (2005).
  • Kesari S, Schiff D, MacDonald L et al. Phase II study of antiangiogenic (metronomic) chemotherapy for recurrent malignant gliomas. Proceedings: American Society of Clinical Oncology, Atlanta, GA, USA, 4 June (2006).
  • McCutcheon IE. The biology of meningiomas. J. NeuroOncol.29, 207–216 (1996).
  • Hsu DW, Efird JT, Hedley-Whyte ET. Progesterone and estrogen receptors in meningiomas: prognostic considerations. J. Neurosurg.86, 113–120 (1997).
  • Wolfsberger S, Doostkam S, Boecher-Schwarz HG et al. Progesterone-receptor index in meningiomas: correlation with clinico-pathological parameters and review of the literature. Neurosurg. Rev.27(4), 238–245 (2004).
  • Goodwin JW, Crowley J, Stafford B et al. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study. J. NeuroOncol.15(1), 75–77 (1993).
  • Markwalder TM, Seiler RW, Zava DT. Antiestrogenic therapy of meningiomas-a pilot study. Surg. Neurol.24, 245–249 (1985).
  • Grunberg SM. Role of antiprogestational therapy for meningiomas. Hum. Reprod.9(Suppl. 1), 202–207 (1994).
  • Grunberg SM, Weiss MH. Lack of efficacy of megestrol acetate in the treatment of unresectable meningioma. J. Neurooncol.8(1), 61–65 (1990).
  • Grundberg SM, Weiss MH, Spitz IM et al. Treatment of unresectable meningiomas with the antiprogesterone agent mifepristone. J. Neurosurg.74, 861–866 (1991).
  • Lamberts SWJ, Tanghe HLJ, Avezaat CJJ et al. Mifepristone (RU486) treatment of meningiomas. J. Neurol. Neurosurg. Psychiatry55, 486–490 (1992).
  • Grunberg SM, Rankin C, Townsend J et al. Phase II double-blind randomized placebo-controlled study of mifepristone (RU) for the treatment of unresectable meningioma. Proceedings American Society of Clinical. Oncology20, 56a222 (2001).
  • Konstantinidou AE, Korkolopouloou P, Mahera H et al. Hormone receptors in non-malignant meningiomas correlate with apoptosis, cell-proliferation and recurrence free survival. Histopathology43, 280–290 (2003).
  • Carroll RS, Schrell UM, Zhang J et al. Dopamine D1, dopamine D2, and prolactin receptor messenger ribonucleic acid expression by polymerase chain reaction in human meningiomas. Neurosurgery38, 367–375 (1996).
  • Dutour A, Kumar U, Panetta R et al. Expression of somatostatin receptor subtypes in human brain tumors. Int. J. Cancer76, 620–627 (1998).
  • De Menis E, Tulipano G, Villa S et al. Development of a meningioma in a patient with acromegaly during octreotide treatment: are there any causal relationships? J. Endocrinol. Invest.26(4), 359–363 (2003).
  • Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas. Effects of specific antagonist. J. Neurosurg.91, 93–99 (1999).
  • Muccioli G, Ghe C, Faccani G et al. Prolactin recptors in human meningiomas: characterization and biologic role. J. Endocrinol.153, 365–371 (1997).
  • Friend KE, Radinsky R, McCutcheon IE. Growth hormone receptor expression and function in meningiomas: effect of a specific receptor antagonist. J. Neurosurg.91(1), 93–99 (1999).
  • Friend KE. Cancer and the potential place for growth hormone receptor antagonist therapy. Growth Horm. IGF Res.11(Suppl A), S121–S123 (2001).
  • McCutcheon IE, Flyvbjerg A, Hill H et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J. Neurosurg.94(3), 487–492 (2001).
  • Drake WM, Grossman AB, Hutson RK. Effect of treatment with pegvisomant on meningioma growth in vivo. Eur. J. Endocrinol.152(1), 161–162 (2005).
  • Schultz S, Pauli SU, Schultz S et al. Immunohistochemical determination of five somatosatin receptors in meningioma reveal frequent overexpression of somatostatin receptor subtype sst2A. Clin. Cancer Res.6, 1865–1874 (2000).
  • Cavalla P, Schiffer D. Neuroendocrine tumors in the brain. Ann. Oncol.12(Suppl. 2), S131–S134 (2001).
  • Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J. Nucl. Med.46(5), 763–769 (2005).
  • Klutmann S, Bohuslavizki KH, Brenner W et al. Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma. J. Nucl. Med.39(11), 1913–1917 (1998).
  • Garcia-Luna PP, Relimpo F, Pumar A et al. Clinical use of octreotide in unresectable meningiomas: a report of three cases. J. Neurosurg. Sci.37, 237–241 (1993).
  • Fisher R, Fadul C, Chamberlain MC et al. Potential efficacy of somatostatin for treatment of recurrent meningiomas. Neurology66(Suppl. 2), A339 (2006) (Abstr P06.019).
  • Lin CC, Kenyon L, Hyslop T et al. Cyclooxygenase-2 (COX-2) expression in human meningioma as a function of tumor grade. Am. J. Clin. Oncol.26(4), S98–S102 (2003).
  • Nathoo N, Barnett GH, Golubic M. The eicosanoid cascade: possible role in gliomas and meningiomas. J. Clin. Pathol.57(1), 6–13 (2004).
  • Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J. Clin. Oncol.23, 5386–5403 (2005).
  • Dy GK, Adjei AA. Obstacles and opportunities in the clinical development of targeted therapeutics. Prog. Drug Res.63, 19–41 (2005).
  • Druker BJ, Talpaz M, Resta DJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344(14), 1031–1037 (2001).
  • Demetri GD, von Mehren M, Blanke CD et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med.347(7), 472–480 (2002).
  • Wen PY, Kesari S, Drappatz J. Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev. Anticancer Ther.6(5), 733–754 (2006).
  • Kesari S, Ramakrishna N, Sauvageot C, Stiles C, Wen PY. Targeted molecular therapies for recurrent malignant glioma. Curr. Oncol. Rep.8, 58–70 (2006).
  • Pietras K, Sjoblom T, Rubin K et al. PDGF receptors as cancer drug targets. Cancer Cell3(5), 439–443 (2003).
  • Black PM, Carroll R, Glowacka D et al. Platelet-derived growth factor expression and stimulation in human meningiomas. J. Neurosurg.81, 388–393 (1994).
  • Wang JL, Nister M, Hermansson M et al. Expression of PDGF beta-receptors in human meningioma cells. Int. J. Cancer.46, 772–778 (1990).
  • Yang SY, Xu GM. Expression of PDGF and its receptor as well as their relationship to proliferating activity and apoptosis of meningiomas in human meningiomas. J. Clin. Neurosci.8(Suppl. 1), 49–53 (2001).
  • Nagashima G, Asai J, Suzuki R, Fujimoto T. Different distribution of c-myc and MIB-1 positive cells in malignant meningiomas with reference to TGFs, PDGF, and PgR expression. Brain Tumor Pathol.18, 1–5 (2001).
  • Maxwell M, Galanopoulos T, Hedley-Whyte ET et al. Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int. J. Cancer46, 16–21 (1990).
  • Johnson MD, Woodard A, Kim P, Frexes-Steed M. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J. Neurosurg.94, 293–300 (2001).
  • Kirsch M, Wilson JC, Black P. Platelet-derived growth factor in human brain tumors. J. NeuroOncol.35, 289–301 (1997).
  • Todo T, Adams EF, Fahlbusch R et al. Autocrine growth stimulation of human meningioma cells by platelet-derived growth factor. J. Neurosurg.84, 852–858 (1996).
  • Capdeville R, Buchdunger E, Zimmerman J, Matter A. Glivec (STI571, imatinib), a rationally developed targeted anticancer drug. Nat. Rev. Drug Discov.1, 493–502 (2002).
  • Wen PY, Yung WKA, Lamborn K et al. Phase II study of imatinib mesylate in for patients with recurrent meningiomas (NABTC 01–08). Presented at: Society of Neuro-Oncology Annual Meeting, Orlando, FL, USA, 16–19 November (2006).
  • Andersson U, Guo D, Malmer B et al. Epidermal growth factor receptor family (EGFR, ErbB2–4) in gliomas and meningiomas. Acta Neuropathol. (Berl.)108(2), 135–142 (2004).
  • Weisman AS, Raquet SS, Kelley PA. Characterization of the epidermal growth factor in human meningioma. Cancer Res.47, 2172–2176 (1987).
  • Carroll RS, Black PM, Zhang J et al. Expression and activation of epidermal growth factor receptors in meningiomas. J. Neurosurg.87(2), 315–323 (1997).
  • Jones NR, Rossi ML, Gregoriou M et al. Epidermal growth factor expression in 72 meningiomas. Cancer66, 152–155 (1990).
  • Johnson MD, Horiba M, Arteaga C. The epidermal growth factor receptor is associated with phopholipase Cδ in meningiomas. Human Pathol.25, 146–153 (1994).
  • Linggood RM, Hsu DW, Efird JT et al. TGF-alpha expression in meningioma-tumor progression and therapeutic response. J. NeuroOncol.26, 45–51 (1995).
  • Sanfilippo JS, Rao CV, Guarnaschelli JJ et al. Detection of epidermal growth factor and transforming growth factor alpha protein in meningiomas and other tumors of the central nervous system in human beings. Surg. Gynecol. Obstet.177(5), 488–496 (1993).
  • Hsu QW, Efird JT, Hedley-Whyte ET. MIB-1 (Ki-67) index and transforming growth factor alpha (TGF-alpha) immunoreactivity are significant prognostic predictors for meningiomas. Neuropathol. Appl. Neurobiol.24, 441–452 (1998).
  • Van Setten GB, Edstrom L, Stibler H et al. Levels of transforming growth factor alpha (TGF-α) in human cerebrospinal fluid. Int. J. Dev. Neurosci.17, 131–134 (1999).
  • Crombet T, Torres O, Rodriguez V et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma20(2), 131–136 (2001).
  • Mawrin C, Sasse T, Kirches E et al. Different activation of mitogen activated protein kinase and akt signaling is associated with aggressive phenotype of human meningiomas. Clin. Cancer. Res.11, 4074–4082 (2005).
  • Adjei AA. Farnesyltransferase inhibitors. Cancer Chemother. Biol. Response Modif.22, 123–33 (2005).
  • Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer6(3), 184–192 (2006).
  • Johnson MD, Okediji E, Woodard A et al. Evidence for phosphatidyinositol 3-kinase-Akt-p70S6K pathway activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J. Neurosurg.97, 668–675 (2002).
  • Johnson MD, Federspiel CF, Gold LI et al. Transforming growth factor-nal transduction pathways. J. NeuroOncol.66, 9–16 (2004).
  • Shapiro GL. Cyclin-dependent pathways as targets for cancer therapy. J. Clin. Oncol.24, 1770–1783 (2006).
  • Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol.23(36), 9408–9421 (2005).
  • Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 5: apoptosis and cell cycle. Expert Rev. Anticancer Ther.5(2), 355–378 (2005).
  • Reed JC. Apoptosis-targeted therapies for cancer. Cancer Cell3, 17–22 (2003).
  • Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents.J. Clin. Oncol.23, 9394–9407 (2005).
  • Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. . Cancer J. Clin. (CA)55(3), 178–194 (2005).
  • Oltersdorf T, Elmore SW, Shoemaker AR et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature435(7042), 677–681 (2005).
  • Piro LD. Apoptosis, Bcl-2 antisense, and cancer therapy. Oncology18(13 Suppl. 10), 5–10 (2004).
  • Letai A, Bassik MC, Walensky LD et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell2(3), 183–192 (2002).
  • Schimmer AD, Dalili S. Targeting the IAP Family of caspase inhibitors as an emerging therapeutic strategy. Hematology Am. Soc. Hematol. Educ. Program215–219 (2005).
  • Schimmer AD, Dalili S, Batey RA, Riedl SJ. Targeting XIAP for the treatment of malignancy. Cancer Cell Death Differ.13(2), 179–188 (2006).
  • Puduvalli VK, Li JT, Chen L, McCutcheon IE. Induction of apoptosis in primary meningioma cultures by fenretinide. Cancer Res.65(4), 1547–1553 (2005).
  • Folkman J. Angiogenesis. Annu. Rev. Med.57, 1–18 (2006).
  • Yazaki T, Takamiya Y, Costello PC et al. Inhibition of angiogenesis and growth of human non-malignant and malignant meningiomas by TNP-470. J. NeuroOncol.23(1), 23–29 (1995).
  • Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Pract. Oncol.3(1), 24–40 (2006).
  • Lamszus K, Lengler U, Schmidt NO et al. Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy. Neurosurgery46(4), 938–947 (2000).
  • Goldman CK, Bharara S, Palmer CA et al. Brain edema in meningioma is associated with increased vascular endothelial growth factor expression. Neurosurgery40, 1269–1277 (1997).
  • Provias J, Caffey K, DelAguila L et al. Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery40, 1016–1026 (1997).
  • Donnini S, Machein MR, Plate KH, Weich HA. Expression and localization of placenta growth factor and PlGF receptors in human meningiomas. J. Pathol.189(1), 66–71 (1999).
  • Martinez-Rumayor A, Arrieta O, Guevara P et al. Coexpression of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor cMET predict recurrence of meningiomas. Cancer Lett.213(1), 117–124 (2004).
  • Bek EL, McMillen MA. Endothelins are angiogenic. J. Cardiovasc. Pharmacol.36(5 Suppl. 1), S135–S139 (2000).
  • Harland SP, Kuc RE, Pickard JD, Davenport AP. Expression of endothelin(A) receptors in human gliomas and meningiomas, with high affinity for the selective antagonist PD156707. Neurosurgery43(4), 890–898 (1998).
  • Pagotto U, Arzberger T, Hopfner U et al. Expression and localization of endothelin-1 and endothelin receptors in human meningiomas. Evidence for a role in tumoral growth. J. Clin. Invest.96(4), 2017–2025 (1995).
  • Nordquist ACS, Smurawa H, Mathiesen T. Expression of matrix metalloproteinases 2 and 9 in meningiomas associated with different degrees of brain invasiveness and edema. J. Neurosurg.95, 839–844 (2001).
  • Siddique K, Yanamandra N, Gujrati M et al. Expression of matrix metalloproteinases, their inhibitors, and urokinase plasminogen activator in human meningiomas. Int. J. Oncol.22, 289–294 (2003).
  • Kondraganti S, Gondi CS, Gujrati M et al. Restoration of tissue factor pathway inhibitor inhibits invasion and tumor growth in vitro and in vivo in a malignant meningioma cell line. Int. J. Oncol.29(1), 25–32 (2006).
  • Salhia B, Tran NL, Symons M et al. Molecular pathways triggering glioma cell invasion. Expert Rev. Mol. Diagn.6, 613–626 (2006).
  • Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J. Clin. Oncol.23, 2411–2422 (2005).
  • Bello L, Zhang J, Nikas DC et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in meningiomas. Neurosurgery47(5), 1185–1195 (2000).
  • Nabors LB, Rosenfeld SS, Mikkelsen T et al. NABTT9911: a phase I trial of EMD 121974 for treatment of patients with recurrent malignant gliomas. Abstr TA-39 Presented at: Society for Neuro-Oncology Ninth Annual Meeting, Toronto, Canada, 18–21 November (2004).
  • Nordqvist AC, Peyrard M, Pettersson H et al. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas. Cancer Res.57(13), 2611–2614 (1997).
  • Nordqvist AC, Mathiesen T. Expression of IGF-II, IGFBP-2, -5, and -6 in meningiomas with different brain invasiveness. J. NeuroOncol.57(1), 19–26 (2002).
  • Liu T, Kuljaca S, Tee A, Marshall GM. Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat. Rev.32(3), 157–165 (2006).
  • Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs Nat. Rev. Cancer5(4), 297–309 (2005).
  • Graner MW, Bigner DD. Therapeutic aspects of chaperones/heat-shock proteins in neuro-oncology. Expert Rev. Anticancer Ther.6(5), 679–695 (2006).
  • Magrassi L, De-Fraja C, Conti L et al. Expression of the JAK and STAT superfamilies in human meningiomas. J. Neurosurg.91(3), 440–446 (1999).
  • Luo Y, Leverson JD. New opportunities in chemosensitization and radiosensitization: modulating the DNA-damage response. Expert Rev. Anticancer Ther.5(2), 333–342 (2005).
  • Camphausen K, Tofilon PJ. Combining radiation and molecular targeting in cancer therapy. Cancer Biol. Ther.3, 247–250 (2004).
  • Kim DW, Huamani J, Fu A et al. Molecular strategies targeting the host component of cancer to enhance tumor response to radiationtherapy. Int. J. Radiat. Oncol. Biol. Phys.64, 38–46 (2006).
  • Russell JS, Burgan W, Oswald KA, Camphausen K, Tofilon PJ. Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 inhibitor 17-allylamino-17- demethoxygeldanamycin: a multitarget approach to radiosensitization. Clin. Cancer Res.9(10 Pt 1), 3749–3755 (2003).
  • Citrin D, Menard C, Camphausen K. Combining radiotherapy and angiogenesis inhibitors: clinical trial design. Int. J. Radiat. Oncol. Biol. Phys.64(1), 15–25 (2006).
  • Winkler F, Kozin SV, Tong RT et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell6(6), 553–563 (2004).
  • Yazaki T, Manz HJ, Rabkin SD, Martuza RL. Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res.55(21), 4752–4756 (1995).
  • Dirven CM, Grill J, Lamfers ML et al. Gene therapy for meningioma: improved gene delivery with targeted adenoviruses. J. Neurosurg.97(2), 441–449 (2002).
  • Ikeda K, Saeki Y, Gonzalez-Agosti C, Ramesh V, Chiocca EA. Inhibition of NF2-negative and NF2-positive primary human meningioma cell proliferation by overexpression of merlin due to vector-mediated gene transfer. J. Neurosurg.91(1), 85–92 (1999).
  • Lawler SE, Peruzzi PP, Chiocca EA. Genetic strategies for brain tumor therapy. Cancer Gene Ther.13(3), 225–233 (2006).
  • Hussain SF, Heimberger AB. Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev. Anticancer Ther.5(5), 777–790 (2005).
  • Boskovitz A, Wikstrand CJ, Kuan CT et al. Monoclonal antibodies for brain tumour treatment. Expert Opin. Biol. Ther.4(9), 1453–1471 (2004).
  • Parajuli P, Sloan AE. Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest.22(3), 405–416 (2004).
  • Akasaki Y, Black KL, Yu JS. Dendritic cell-based immunotherapy for malignant gliomas. Expert Rev. Neurother.5(4), 497–508 (2005).
  • Curtin JF, King GD, Candolfi M et al. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors. Curr. Top. Med. Chem.5(12), 1151–1170 (2005).
  • Lusis E, Gutmann DH. Meningioma: an update. Curr. Opin. Neurol.17(6), 687–692 (2004).
  • Katoh M, Wilmotte R, Belkouch MC et al. Survivin in brain tumors: an attractive target for immunotherapy. J. NeuroOncol.64(1–2), 71–76 (2003).
  • Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat. Rev. Cancer6(6), 425–436 (2006).
  • Kondraganti S, Gondi CS, McCutcheon I et al. RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int. J. Oncol.28(6), 1353–1360 (2006).
  • Salhia B, Rutka JT, Lingwood C et al. The treatment of malignant meningioma with verotoxin. Neoplasia.4(4), 304–311 (2002).
  • Johnson MD, Woodard A, Okediji EJ et al. Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J. NeuroOncol.56, 133–142 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.