105
Views
20
CrossRef citations to date
0
Altmetric
Review

Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications

, , , &
Pages 1481-1494 | Published online: 10 Jan 2014

References

  • Preston-Martin S, Davis F, McKean-Cowdin R. Epidemiology of primary brain tumors. In: Brain Tumor Immunotherapy. Liau LM, Becker DP, Cloughesy TF, Bigner DD (Eds.). Humana Press, NJ, USA, 47–71 (2001).
  • American Cancer Society. Cancer Facts and Figures 2005. American Cancer Society, GA, USA (2005).
  • Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet359, 1011–1018 (2002).
  • Sehati N, Liau LM. Adjuvant treatment for gliomas. Contemporary Neurosurgery25, 1–9 (2003).
  • Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J. Control Release74, 63–67 (2001).
  • Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med.352, 987–996 (2005).
  • Prins RM, Liau LM. Immunology and immunotherapy in neurosurgical disease. Neurosurgery53, 144–152 (2003).
  • Walker PR, Calzascia T, Dietrich PY. All in the head: obstacles for immune rejection of brain tumours. Immunology107, 28–38 (2002).
  • Wischhusen J, Schneider D, Mittelbronn M et al. Death receptor-mediated apoptosis in human malignant glioma cells: modulation by the CD40/CD40L system. J. Neuroimmunol.162, 28–42 (2005).
  • Wiendl H, Mitsdoerffer M, Weller M. Hide-and-seek in the brain: a role for HLA-G mediating immune privilege for glioma cells. Semin. Cancer Biol.13, 343–351 (2003).
  • Walker PR, Calzascia T, Schnuriger V et al. The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T cells. J. Immunol.165, 3128–3135 (2000).
  • Smits HA, van Beelen AJ, de Vos NM et al. Activation of human macrophages by amyloid-b is attenuated by astrocytes. J. Immunol.166, 6869–6876 (2001).
  • Taniguchi Y, Ono K, Yoshida S, Tanaka R. Antigen-presenting capability of glial cells under glioma-harboring conditions and the effect of glioma-derived factors on antigen presentation. J. Neuroimmunol111, 177–185 (2000).
  • Hickey WF. Basic principles of immunological surveillance of the normal central nervous system. Glia36, 118–124 (2001).
  • Nelson DJ, Mukherjee S, Bundell C et al. Tumor progression despite efficient tumor antigen cross-presentation and effective “arming” of tumor antigen-specific CTL. J. Immunol.166, 5557–5566 (2001).
  • Ochsenbein AF, Sierro S, Odermatt B et al. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature411, 1058–1064 (2001).
  • Aloisi F, Ambrosini E, Columba-Cabezas S, Magliozzi R, Serafini B. Intracerebral regulation of immune responses. Ann. Med.33, 510–515 (2001).
  • Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol. Today21, 141–147 (2000).
  • Saas P, Boucraut J, Walker PR et al. TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia32, 102>–107 (2000).
  • Saas P, Walker PR, Quiquerez AL et al. A self-defence mechanism of astrocytes against Fas-mediated death involving interleukin-8 and CXCR2. Neuroreport13, 1921–1924 (2002).
  • Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med.195, 1499–1505 (2002).
  • Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol.165, 4773–4777 (2000).
  • Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol.2, 46–53 (2002).
  • Lampson LA. Brain tumor immunotherapy: an immunologist’s perspective. J. Neurooncol.64, 3–11 (2003).
  • Walker PR, Calzascia T, de Tribolet N, Dietrich PY. T-cell immune responses in the brain and their relevance for cerebral malignancies. Brain Res. Rev.42, 97–122 (2003).
  • Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N. Engl. J. Med.349, 1543–1554 (2003).
  • Liau LM, Prins RM, Kiertscher SM et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local CNS tumor microenvironment. Clin. Cancer Res.11, 5515–5525 (2005).
  • Hohlfeld R, Wekerle H. Immunological update on multiple sclerosis. Curr. Opin. Neurol.14, 299–304 (2001).
  • Dorries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr. Top. Microbiol. Immunol.253, 219–245 (2001).
  • Facoetti A, Capelli E, Nano R. HLA class I molecules expression: evaluation of different immunocytochemical methods in malignant lesions. Anticancer Res.21, 2435–2440 (2001).
  • Yang I, Kremen TJ, Giovannone AJ et al. Modulation of major histocompatibility complex Class I molecules and major histocompatibility complex-bound immunogenic peptides induced by interferon-a and interferon-g treatment of human glioblastoma multiforme. J. Neurosurg.100, 310–319 (2004).
  • Nigro JM, Misra A, Zhang L et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res.65, 1678–1686 (2005).
  • Tuteja R, Tuteja N. Serial analysis of gene expression (SAGE): application in cancer research. Med. Sci. Monit.10, RA132–RA140 (2004).
  • Liau LM, Yang I. Microarrays and the genetic analysis of brain tumors. Current Genomics3, 33–41 (2002).
  • Liau LM, Lallone RL, Seitz RS et al. Identification of a human glioma-associated growth factor gene, granulin, using differential immuno-absorption. Cancer Res.60, 1353–1360 (2000).
  • Van Meir EG, Hao C, Post DE, Liau LM, Brat DJ. Development of molecular therapy for specific targeting of the pathways that permit brain tumor development. In: Genomic and Molecular Neuro-Oncology. Zhang W, Fuller GN (Eds). Jones and Bartlett Publishers, MA, USA (2004).
  • Wikstrand CJ, Cole VR, Crotty LE, Sampson JH, Bigner DD. Generation of anti-idiotypic reagents in the EGFRvIII tumor-associated antigen system. Cancer Immunol. Immunother.50, 639–652 (2002).
  • Lutzker SG, Lattime EC. Use of dendritic cells to immunize against cancers overexpressing p53. Clin. Cancer Res.7, 2–4 (2001).
  • Liu G, Yu JS, Zeng G et al. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J. Immunother.27, 220–226 (2004).
  • Murayama K, Kobayashi T, Imaizumi T et al. Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J. Immunother.23, 511–518 (2000).
  • Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H. Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor a2 chain. Clin.Cancer Res.8, 2851–2855 (2002).
  • Katoh M, Wilmotte R, Belkouch M et al. Survivin in brain tumors: an attractive target for immunotherapy. J. Neurooncol.64, 71–76 (2003).
  • Vonderheide RH, Domchek SM, Schultze JL et al. Vaccination of cancer patients against telomerase induces functional antitumor CD8+ T lymphocytes. Clin. Cancer Res.10, 828–839 (2004).
  • Liu G, Ying H, Zeng G et al. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res.64, 4980–4986 (2004).
  • Prins RM, Odesa SK, Liau LM. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res. (2003).
  • Shai R, Shi T, Kremen TJ et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene22, 4918–4923 (2003).
  • Mischel PS, Shai R, Shi T et al. Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene22, 2361–4973 (2003).
  • Jones LA, Salgaller ML. Immunologic approaches to antigen discovery for cancer vaccines. Expert Opin. Investig. Drugs9, 481–490 (2000).
  • Schultze JL, Vonderheide RH. From cancer genomics to cancer immunotherapy: toward second-generation tumor antigens. Trends Immunol.22, 516–523 (2001).
  • Butterfield LH, Meng WS, Koh A et al. T cell responses to HLA-A*0201-restricted peptides derived from human a fetoprotein. J. Immunol.166, 5300–5308 (2001).
  • Maecker B, von Bergwelt-Baildon, Anderson KS, Vonderheide RH, Schultze JL. Linking genomics to immunotherapy by reverse immunology – ‘immunomics’ in the new millennium. Curr. Mol. Med.1, 609–619 (2001).
  • Mischel PS, Nelson SF, Cloughesy TF. Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. Cancer Biol. Ther.2, 242–247 (2003).
  • Freije WA, Castro-Vargas FE, Fang Z et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res.64, 6503–6510 (2004).
  • Prins RM, Liau LM. Cellular immunity and immunotherapy of brain tumors. Front. Biosci.9, 3124–3136 (2004).
  • Mehrian-Shai R, Reichardt JK, Ya-Hsuan H et al. Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Brain Res. Mol. Brain Res.136, 99–103 (2005).
  • Salgaller ML. American Association for Cancer Research: dendritic cells: strategies and vaccines. April 1–5, 2000, San Francisco, CA, USA. Expert Opin. Investig. Drugs9, 1407–1412 (2000).
  • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23, 1147–1157 (2005).
  • Sampson JH, Crotty LE, Lee S et al. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc. Natl Acad. Sci. USA97, 7503–7508 (2000).
  • Wikstrand CJ, Zalutsky MR, Bigner DD. Radiolabeled antibodies for therapy of brain tumors. In: Brain Tumor Immunotherapy. Liau LM, Becker DP, Cloughesy TF, Bigner DD (Eds). Humana Press, NJ, USA, 205–229 (2001).
  • Riva P, Franceschi G, Frattarelli M et al. Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a Phase I study. Clin. Cancer Res.5, S3275–S3280 (1999).
  • Reardon DA, Akabani G, Coleman RE et al. Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin.Oncol.20, 1389–1397 (2002).
  • Emrich JG, Brady LW, Quang TS et al. Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: ten-year synopsis of a novel treatment. Am. J. Clin. Oncol.25, 541–546 (2002).
  • Quang TS, Brady LW. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int. J. Radiat. Oncol. Biol. Phys.58, 972–975 (2004).
  • Paganelli G, Bartolomei M, Ferrari M et al. Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother. Radiopharm.16, 227–235 (2001).
  • Bartolomei M, Mazzetta C, Handkiewicz-Junak D et al. Combined treatment of glioblastoma patients with locoregional pre-targeted 90Y-biotin radioimmunotherapy and temozolomide. Q. J. Nucl. Med. Mol. Imaging48, 220–228 (2004).
  • Hall WA. Targeted toxin therapy for malignant astrocytoma. Neurosurgery46, 544–551 (2000).
  • Rand RW, Kreitman RJ, Patronas N et al. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin.Cancer Res.6, 2157–2165 (2000).
  • Kunwar S. Convection-enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing Phase I studies. Acta Neurochir. Suppl.88, 105–111 (2003).
  • Parney IF, Kunwar S, McDermott M et al. Neuroradiographic changes following convection-enhanced delivery of the recombinant cytotoxin interleukin 13-PE38QQR for recurrent malignant glioma. J. Neurosurg.102, 267–275 (2005).
  • Sampson JH, Akabani G, Archer GE et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J. Neurooncol.65, 27–35 (2003).
  • Husain SR, Joshi BH, Puri RK. Interleukin-13 receptor as a unique target for anti-glioblastoma therapy. Int. J. Cancer92, 168–175 (2001).
  • Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J. Neurooncol.65, 37–48 (2003).
  • Kunwar S, Chang SM, Prados MD et al. Safety of intraparenchymal convection-enhanced delivery of cintredekin besudotox in early-phase studies. Neurosurg. Focus20, E15 (2006).
  • Shimamura T, Husain SR, Puri RK. The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg. Focus20, E11 (2006).
  • Plautz GE, Mukai S, Cohen PA, Shu S. Cross-presentation of tumor antigens to effector T cells is sufficient to mediate effective immunotherapy of established intracranial tumors. J. Immunol.165, 3656–3662 (2000).
  • Plautz GE, Miller DW, Barnett GH et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin.Cancer Res.6, 2209–2218 (2000).
  • Mitchell DA, Fecci PE, Sampson JH. Adoptive immunotherapy for malignant glioma. Cancer J.9, 157–166 (2003).
  • Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer62, 665–671 (1988).
  • Dillman RO, Duma CM, Schiltz PM et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J. Immunother.27, 398–404 (2004).
  • Hayes RL, Arbit E, Odaimi M et al. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit. Rev. Oncol. Hematol.39, 31–42 (2001).
  • Kruse CA, Cepeda L, Owens B et al. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol. Immunother.45, 77–87 (1997).
  • Merchant RE, Baldwin NG, Rice CD, Bear HD. Adoptive immunotherapy of malignant glioma using tumor-sensitized T lymphocytes. Neurol. Res.19, 145–152 (1997).
  • Wood GW, Holladay FP, Turner T, Wang YY, Chiga M. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J. Neurooncol.48, 113–120 (2000).
  • Ishikawa E, Tsuboi K, Saijo K et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res.24, 1861–1871 (2004).
  • Quattrocchi KB, Miller CH, Cush S et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J. Neurooncol.45, 141–157 (1999).
  • Wang LX, Huang WX, Graor H et al. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells. J. Transl. Med.2, 41 (2004).
  • Liau LM, Black KL, Prins RM et al. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J. Neurosurg.90, 1115–1124 (1999).
  • Okada H, Pollack IF. Cytokine gene therapy for malignant glioma. Expert Opin. Biol. Ther.4, 1609–1620 (2004).
  • Glick RP, Lichtor T, Cohen EP. Cytokine-based immuno-gene therapy for brain tumors. In: Brain Tumor Immunotherapy. Liau LM, Becker DP, Cloughesy TF, Bigner DD (Eds). Humana Press, NJ, USA, 273–288 (2001).
  • Yu JS, Liu G, Ying H et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res.64, 4973–4979 (2004).
  • Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res.61, 842–847 (2001).
  • Yamanaka R, Abe T, Yajima N et al. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical Phase I/II trial. Br. J. Cancer89, 1172–1179 (2003).
  • Yamanaka R, Yajima N, Abe T et al. Dendritic cell-based glioma immunotherapy (review). Int. J. Oncol.23, 5–15 (2003).
  • Yamanaka R, Homma J, Yajima N et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical Phase I/II Trial. Clin. Cancer Res.11, 4160–4167 (2005).
  • Kikuchi T, Akasaki Y, Irie M et al. Results of a Phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol. Immunother.50, 337–344 (2001).
  • Kikuchi T, Akasaki Y, Abe T et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J. Immunother.27, 452–459 (2004).
  • Caruso DA, Orme LM, Neale AM et al. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology6, 236–246 (2004).
  • Okada H, Lieberman FS, Edington HD et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J. Neurooncol.64, 13–20 (2003).
  • Ren H, Boulikas T, Lundstrom K et al. Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene – a Phase I/II clinical protocol. J. Neurooncol.64, 147–154 (2003).
  • Schneider T, Gerhards R, Kirches E, Firsching R. Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. J.Neurooncol.53, 39–46 (2001).
  • Steiner HH, Bonsanto MM, Beckhove P et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol.22, 4272–4281 (2004).
  • Giezeman-Smits KM, Okada H, Brissette-Storkus CS et al. Cytokine gene therapy of gliomas: induction of reactive CD4+ T cells by interleukin-4-transfected 9L gliosarcoma is essential for protective immunity. Cancer Res.60, 2449–2457 (2000).
  • Chabalgoity JA, Dougan G, Mastroeni P, Aspinall RJ. Live bacteria as the basis for immunotherapies against cancer. Expert Rev.Vaccines.1, 495–505 (2002).
  • Matzinger P. The danger model: a renewed sense of self. Science296, 301–305 (2002).
  • Barton GM, Medzhitov R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol.270, 81–92 (2002).
  • Ulevitch RJ. Therapeutics targeting the innate immune system. Nat. Rev. Immunol.4, 512–520 (2004).
  • Liau LM, Jensen ER, Kremen TJ et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res.62, 2287–2293 (2002).
  • Calzascia T, Di Berardino-Besson W, Wilmotte R et al. Cutting edge: cross-presentation as a mechanism for efficient recruitment of tumor-specific CTL to the brain. J. Immunol.171, 2187–2191 (2003).
  • Rosenberg SA, Spiess PJ, Kleiner DE. Antitumor effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J. Immunother.25, 218–225 (2002).
  • Clairmont C, Lee KC, Pike J et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J. Infect Dis.181, 1996–2002 (2000).
  • Toso JF, Gill VJ, Hwu P et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol.20, 142–152 (2002).
  • Csatary LK, Gosztonyi G, Szeberenyi J et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J. Neurooncol.67, 83–93 (2004).
  • Salgaller ML, Liau LM. Current status of clinical trials for glioblastoma. Reviews on Recent Clinical Trials (1)3, 265–281(17) (2006).
  • Lesniak MS, Gabikian P, Tyler BM, Pardoll DM, Brem H. Dexamethasone mediated inhibition of local IL-2 immunotherapy is dose dependent in experimental brain tumors. J. Neurooncol.70, 23–28 (2004).
  • Read SB, Kulprathipanja NV, Gomez GG et al. Human alloreactive CTL interactions with gliomas and with those having upregulated HLA expression from exogenous IFN-γ or IFN-γ gene modification. J. Interferon Cytokine Res.23, 379–393 (2003).
  • Badie B, Schartner JM, Paul J et al. Dexamethasone-induced abolition of the inflammatory response in an experimental glioma model: a flow cytometry study. J. Neurosurg.93, 634–639 (2000).
  • Takagi Y, Kikuchi T, Niimura M, Ohno T. Effects of glucocorticoids on antitumor effects of immunizations with fusions of dendritic and tumor cells. Anticancer Res.23, 2553–2558 (2003).

Websites

  • HLA Peptide Binding Predictions http://bimas.dcrt.nih.gov/molbio/ hla_bind/
  • Department of Immunology, University of Tuebingen www.uni-tuebingen.de/uni/kxi/
  • Northwest Biotherapeutics www.nwbio.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.