56
Views
12
CrossRef citations to date
0
Altmetric
Review

Silencing neurodegenerative disease: bringing RNA interference to the clinic

&
Pages 223-233 | Published online: 10 Jan 2014

References

  • Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 806–811 (1998).
  • Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature 431(7006), 338–342 (2004).
  • Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 431(7006), 371–378 (2004).
  • Shankar P, Manjunath N, Lieberman J. The prospect of silencing disease using RNA interference. JAMA 293(11), 1367–1373 (2005).
  • Stevenson M. Therapeutic potential of RNA interference. N. Engl. J. Med. 351(17), 1772–1777 (2004).
  • Dykxhoorn DM, Lieberman J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56, 401–423 (2005).
  • Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther. 12(3), 217–227 (2005).
  • Berkhout B. RNA interference as an antiviral approach: targeting HIV-1. Curr. Opin. Mol. Ther. 6(2), 141–145 (2004).
  • Davidson BL, Paulson HL. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol. 3(3), 145–149 (2004).
  • Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 309(5740), 1519–1524 (2005).
  • Kim VN. MicroRNA biogenesis: co-ordinated cropping and dicing. Nature. Rev. Mol. Cell Biol. 6(5), 376–385 (2005).
  • Tomari Y, Zamore PD. MicroRNA biogenesis: drosha can’t cut it without a partner. Curr. Biol. 15(2), R61–R64 (2005).
  • Cullen BR. Transcription and processing of human microRNA precursors. Mol. Cell 16(6), 861–865 (2004).
  • Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16(3), 223–229 (2004).
  • Tomari Y, Zamore PD. Perspective: machines for RNAi. Genes Dev. 19(5), 517–529 (2005).
  • Meister G,Tuschl T. Mechanisms of gene silencing by double-stranded. RNA Nature 431(7006) 343–349 (2004).
  • Zeng Y, Cullen BR. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem. 280(30), 27595–27603 (2005).
  • Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956), 415–419 (2003).
  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 303(5654), 95–98 (2004).
  • Carmell MA, Hannon GJ. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11(3), 214–218 (2004).
  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818), 363–366 (2001).
  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD. A protein sensor for siRNA asymmetry. Science 306(5700), 1377–1380 (2004).
  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4), 607–620 (2005).
  • Rand TA, Petersen S, Du F, Wang X. Argonaute2 cleaves the antiguide strand of siRNA during RISC activation. Cell 123(4), 621–629 (2005).
  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4), 631–640 (2005).
  • Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2), 209–216 (2003).
  • Schwarz DS, Hutvagner G, Du T et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2), 199–208 (2003).
  • Ralph GS, Mazarakis ND, Azzouz M. Therapeutic gene silencing in neurological disorders, using interfering RNA J. Mol. Med. 83(6), 413–419 (2005).
  • Forte A, Cipollaro M, Cascino A, Galderisi U. Small interfering RNAs and antisense oligonucleotides for treatment of neurological diseases. Curr. Drug Targets 6(1), 21–29 (2005).
  • Xia H, Mao Q, Eliason SL et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature. Med. 10(8), 816–820 (2004).
  • Ralph GS, Radcliffe PA, Day DM et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med. 11(4), 429–433 (2005).
  • Raoul C, Abbas-Terki T, Bensadoun JC et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Med. 11(4), 423–428 (2005).
  • Harper SQ, Staber PD, He X et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc. Natl Acad. Sci. USA 102(16), 5820–5825 (2005).
  • Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ. Intrastriatal rAAV-mediated delivery of antihuntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol. Ther. 12(4), 618–633 (2005).
  • Ding H, Schwarz DS, Keene A et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell2(4), 209–217 (2003).
  • Miller VM, Gouvion CM, Davidson BL, Paulson HL. Targeting Alzheimer’s disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic. Acids Res. 32(2), 661–668 (2004).
  • Miller VM, Xia H, Marrs GL et al. Allele-specific silencing of dominant disease genes. Proc. Natl Acad. Sci. USA 100(12), 7195–7200 (2003).
  • Gonzalez-Alegre P, Miller VM, Davidson BL, Paulson HL. Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann. Neurol. 53(6), 781–787 (2003).
  • Gonzalez-Alegre P, Bode N, Davidson BL, Paulson HL. Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. J. Neurosci. 25(45),10502–10509 (2005).
  • Abdelgany A, Wood M, Beeson D. Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum. Mol. Genet. 12(20), 2637–2644 (2003).
  • Kao SC, Krichevsky AM, Kosik KS, Tsai LH. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem. 279(3), 1942–1949 (2004).
  • Singer O, Marr RA, Rockenstein E et al. Targeting BACE1 with siRNAs ameliorates Alzheimer’s disease neuropathology in a transgenic model. Nature Neurosci. 8(10),1343–1349 (2005).
  • Eriksen JL, Przedborski S, Petrucelli L. Gene dosage and pathogenesis of Parkinson’s disease. Trends Mol. Med. 11(3), 91–96 (2005).
  • Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836), 494–498 (2001).
  • Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15(2), 188–200 (2001).
  • Davidson TJ, Harel S, Arboleda VA et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces microRNA-like effects before mRNA degradation. J. Neurosci. 24(45), 10040–10046 (2004).
  • Soutschek J, Akinc A, Bramlage B et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014), 173–178 (2004).
  • Morrissey DV, Lockridge JA, Shaw L et al. Potent and persistent in vivo antiHBV activity of chemically modified siRNAs. Nature Biotechnol. 23(8), 1002–1007 (2005).
  • Morrissey DV, Blanchard K, Shaw L et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41(6), 1349–1356 (2005).
  • Eckstein F. Small non-coding RNAs as magic bullets. Trends Biochem. Sci. 30(8), 445–452 (2005).
  • Manoharan M. RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 8(6), 570–579 (2004).
  • Check E. A crucial test. Nature Med. 11(3), 243–244 (2005).
  • Bressman SB. Dystonia: phenotypes and genotypes. Rev. Neurol. 159(10 Pt 1), 849–856 (2003).
  • Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567) 550–553 (2002).
  • Vermeulen A, Behlen L, Reynolds A et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11(5), 674–682 (2005).
  • Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl Acad. Sci. USA 102(37), 13212–13217 (2005).
  • Song E, Zhu P, Lee SK et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23(6), 709–717 (2005).
  • Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin. Biol. Ther. 4(7), 1103–1113 (2004).
  • Zhang Y, Zhang YF, Bryant J et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10(11), 3667–3677 (2004).
  • Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J. Gene Med. 5(12), 1039–1045 (2003).
  • Li MJ, Rossi JJ. Lentiviral vector delivery of recombinant small interfering RNA expression cassettes. Methods Enzymol. 392, 218–226 (2005).
  • Li M, Rossi JJ. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells. Methods Mol. Biol. 309, 261–272 (2005).
  • Grimm D, Kleinschmidt JA. Progress in adeno-associated virus Type 2 vector production: promises and prospects for clinical use. Hum. Gene Ther. 10(15), 2445–2450 (1999).
  • Burger C, Gorbatyuk OS, Velardo MJ et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10(2), 302–317 (2004).
  • Peden CS, Burger C, Muzyczka N, Mandel RJ. Circulating antiwild type adeno-associated virus Type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J. Virol. 78(12), 6344–6359 (2004).
  • Mandel RJ, Snyder RO, Leff SE. Recombinant adeno-associated viral vector-mediated glial cell line-derived neurotrophic factor gene transfer protects nigral dopamine neurons after onset of progressive degeneration in a rat model of Parkinson’s disease. Exp. Neurol. 160(1), 205–214 (1999).
  • Mandel RJ, Burger C. Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr. Opin. Mol. Ther. 6(5), 482–490 (2004).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580) 353–356 (2002).
  • Thakker DR, Natt F, Husken D et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl Acad. Sci. USA 101(49), 17270–17275 (2004).
  • Bruijn LI, Miller TM and Cleveland DW. Unraveling the mechanisms involved in motor neurone degeneration in ALS. Ann. Rev. Neurosci. 27, 723–749 (2004).
  • Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J. Neurosci. 24(11), 2593–2601 (2004).
  • Shashidharan P, Sandu D, Potla U et al. Transgenic mouse model of early-onset DYT1 dystonia. Hum. Mol. Genet. 14(1), 125–133 (2005).
  • Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101(1), 57–66 (2000).
  • Hobert O. MicroRNAs: all gone and then what? Curr. Biol. 15(10), R387–R389 (2005).
  • Humbert S, Saudou F. Toward cell specificity in SCA1. Neuron 34(5), 669–670 (2002).
  • Paulson H, Ammache Z. Ataxia and hereditary disorders. Neurol. Clin. 19(3), 759–782 (2001).
  • Matilla A, Roberson ED, Banfi S et al. Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J. Neurosci. 18(14), 5508–5516 (1998).
  • Zu T, Duvick LA, Kaytor MD et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24(40), 8853–8861 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.