103
Views
29
CrossRef citations to date
0
Altmetric
Review

Long-term adaptive changes induced by serotonergic antidepressant drugs

, &
Pages 235-245 | Published online: 10 Jan 2014

References

  • Kessler RC, McGonagle KA, Zhao S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psych. 51(1), 8–19 (1994).
  • D’Sa C, Duman RS. Antidepressants and neuroplasticity. Bipolar Disord. 4(3), 183–194 (2002).
  • Jacobs BL. Adult brain neurogenesis and depression. Brain Behav. Immun. 16(5), 602–609 (2002).
  • Kempermann G, Kronenberg G. Depressed new neurons – adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psych. 54(5), 499–503 (2003).
  • Delgado PL, Miller HL, Salomon RM et al. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol. Psych. 46(2), 212–220 (1999).
  • Blier P, De Montigny C, Azzaro AJ. Modification of serotonergic and noradrenergic neurotransmissions by repeated administration of monoamine oxidase inhibitors: electrophysiological studies in the rat central nervous system. J. Pharmacol. Exp. Ther. 237(3), 987–994 (1986).
  • Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 15(7), 220–226 (1994).
  • Hensler JG, Kovachich GB, Frazer A. A quantitative autoradiographic study of serotonin1A receptor regulation. Effect of 5,7-dihydroxytryptamine and antidepressant treatments. Neuropsychopharmacology 4(2), 131–144 (1991).
  • Shen C, Li H, Meller E. Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35S]GTP γ S binding in rat brain regions. Neuropharmacology 42(8), 1031–1038 (2002).
  • Celada P, Artigas F. Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. Naunyn. Schmiedebergs Arch. Pharmacol. 347(6), 583–590 (1993).
  • Sleight AJ, Smith RJ, Marsden CA, Palfreyman MG. The effects of chronic treatment with amitriptyline and MDL 72394 on the control of 5-HT release in vivo. Neuropharmacology 28(5), 477–480 (1989).
  • Mongeau R, de Montigny C, Blier P. Electrophysiologic evidence for desensitization of α 2-adrenoceptors on serotonin terminals following long-term treatment with drugs increasing norepinephrine synaptic concentration. Neuropsychopharmacology 10(1), 41–51 (1994).
  • Evrard A, Malagie I, Laporte AM et al. Altered regulation of the 5-HT system in the brain of MAO-A knockout mice. Eur. J. Neurosci.15(5), 841–851 (2002).
  • Owesson CA, Hopwood SE, Callado LF et al. Altered presynaptic function in monoaminergic neurons of monoamine oxidase-A knockout mice. Eur. J. Neurosci.15(9), 1516–1522 (2002).
  • Haddjeri N, De Montigny C, Curet O, Blier P. Effect of the reversible monoamine oxidase-A inhibitor befloxatone on the rat 5-hydroxytryptamine neurotransmission. Eur. J. Pharmacol.343(2–3), 179–192 (1998).
  • Blier P, Bouchard C. Modulation of 5-HT release in the guinea-pig brain following long-term administration of antidepressant drugs. Br. J. Pharmacol. 113(2), 485–495 (1994).
  • Jolas T, Haj-Dahmane S, Kidd EJ et al. Central pre- and postsynaptic 5-HT1A receptors in rats treated chronically with a novel antidepressant, cericlamine. J. Pharmacol. Exp. Ther. 268(3), 1432–1443 (1994).
  • Sharp T, Hjorth S. Application of brain microdialysis to study the pharmacology of the 5-HT1A autoreceptor. J. Neurosci. Methods 34(1–3), 83–90 (1990).
  • Invernizzi R, Belli S, Samanin R. Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res.584(1–2), 322–324 (1992).
  • Bel N, Artigas F. Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur. J. Pharmacol.229(1), 101–103 (1992).
  • Hrdina PD, Foy B, Hepner A, Summers RJ. Antidepressant binding sites in brain: autoradiographic comparison of [3H]paroxetine and [3H]imipramine localization and relationship to serotonin transporter. J. Pharmacol. Exp. Ther. 252(1), 410–418 (1990).
  • Verge D, Daval G, Patey A et al. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur. J. Pharmacol. 113(3), 463–464 (1985).
  • Rutter JJ, Auerbach SB. Acute uptake inhibition increases extracellular serotonin in the rat forebrain. J. Pharmacol. Exp. Ther. 265(3), 1319–1324 (1993).
  • Artigas F, Romero L, de Montigny C, Blier P. Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci.19(9), 378–383 (1996).
  • Li Q, Brownfield MS, Levy AD et al. Attenuation of hormone responses to the 5-HT1A agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. Biol. Psych. 36(5), 300–308 (1994).
  • Le Poul E, Laaris N, Doucet E et al. Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn. Schmiedebergs Arch. Pharmacol. 352(2), 141–148 (1995).
  • Riad M, Zimmer L, Rbah L et al. Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J. Neurosci. 24(23), 5420–5426 (2004).
  • Lesch KP, Manji HK. Signal-transducing G-proteins and antidepressant drugs: evidence for modulation of α subunit gene expression in rat brain. Biol. Psych. 32(7), 549–579 (1992).
  • Lesch KP, Hough CJ, Aulakh CS et al. Fluoxetine modulates G-protein α s, α q, and α 12 subunit mRNA expression in rat brain. Eur. J. Pharmacol.227(2), 233–237 (1992).
  • Li Q, Muma NA, van de Kar LD. Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: reductions in hypothalamic and midbrain Gi and G(o) proteins and in neuroendocrine responses to a 5-HT1A agonist. J. Pharmacol. Exp. Ther. 279(2), 1035–1042 (1996).
  • Pineyro G, Blier P. Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine1D receptors: effect of tetrodotoxin, G-protein inactivation and long-term antidepressant administration. J. Pharmacol. Exp. Ther. 276(2), 697–707 (1996).
  • Fabre V, Beaufour C, Evrard A et al. Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knockout mice lacking the 5-HT transporter. Eur. J. Neurosci.12(7), 2299–2310 (2000).
  • Gobbi G, Murphy DL, Lesch K, Blier P. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J. Pharmacol. Exp. Ther. 296(3), 987–995 (2001).
  • Hensler JG. Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci.72(15), 1665–1682 (2003).
  • Hanoun N, Mocaer E, Boyer PA, Hamon M, Lanfumey L. Differential effects of the novel antidepressant agomelatine (S 20098) versus fluoxetine on 5-HT1A receptors in the rat brain. Neuropharmacology 47(4), 515–526 (2004).
  • Maj J, Bijak M, Dziedzicka-Wasylewska M et al. The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology (Berl). 127(1), 73–82 (1996).
  • Newman ME, Shapira B, Lerer B. Regulation of 5-hydroxytryptamine1A receptor function in rat hippocampus by short- and long-term administration of 5-hydroxytryptamine1A agonist and antidepressants. J. Pharmacol. Exp. Ther. 260(1), 16–20 (1992).
  • Mannoury la Cour C, Boni C, Hanoun N et al. Functional consequences of 5-HT transporter gene disruption on 5-HT(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J. Neurosci. 21(6), 2178–2185 (2001).
  • Mongeau R, Blier P, de Montigny C. The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res. Brain Res. Rev. 23(3), 145–195 (1997).
  • Haddjeri N, Blier P, de Montigny C. Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J. Neurosci.18(23), 10150–10156 (1998).
  • Manji HK, Moore GJ, Rajkowska G, Chen G. Neuroplasticity and cellular resilience in mood disorders. Mol. Psych. 5(6), 578–593 (2000).
  • Reid IC, Stewart CA. How antidepressants work: new perspectives on the pathophysiology of depressive disorder. Br. J. Psych. 178, 299–303 (2001).
  • Sheline YI. Hippocampal atrophy in major depression: a result of depression-induced neurotoxicity? Mol. Psych.1(4), 298–299 (1996).
  • McEwen BS. Stress and hippocampal plasticity. Ann. Rev. Neurosci. 22, 105–122 (1999).
  • Watanabe Y, Gould E, McEwen BS. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588(2), 341–345 (1992).
  • Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69(1), 83–88 (1995).
  • Stewart MG, Davies HA, Sandi C et al. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131(1), 43–54 (2005).
  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2), 253–266 (2000).
  • Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9(5), 1705–1711 (1989).
  • Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur. J. Pharmacol. 222(1), 157–162 (1992).
  • Hajszan T, MacLusky NJ, Leranth C. Short-term treatment with the antidepressant fluoxetine triggers pyramidal dendritic spine synapse formation in rat hippocampus. Eur. J. Neurosci.21(5), 1299–1303 (2005).
  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci.20(24), 9104–9110 (2000).
  • Madsen TM, Treschow A, Bengzon J et al. Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psych. 47(12), 1043–1049 (2000).
  • Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J. Neurochem.75(4), 1729–1734 (2000).
  • Vollmayr B, Simonis C, Weber S, Gass P, Henn F. Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol. Psych. 54(10), 1035–1040 (2003).
  • Lee HJ, Kim JW, Yim SV et al. Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol. Psych.6(6), 610 725–728 (2001).
  • Czeh B, Michaelis T, Watanabe T et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl Acad. Sci. USA 98(22), 12796–12801 (2001).
  • van Praag H, Schinder AF, Christie BR et al. Functional neurogenesis in the adult hippocampus. Nature 415(6875), 1030–1034 (2002).
  • Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nature Neurosci. 2(10), 894–897 (1999).
  • Henn FA, Vollmayr B. Neurogenesis and depression: etiology or epiphenomenon? Biol. Psych. 56(3), 146–150 (2004).
  • Santarelli L, Saxe M, Gross C et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634), 805–809 (2003).
  • Hui Z, Guang-Yu M, Chong-Tao X, Quan Y, Xiao-Hu X. Phenytoin reverses the chronic stress-induced impairment of memory consolidation for water maze training and depression of LTP in rat hippocampal CA1 region, but does not affect motor activity. Brain Res. Cogn. Brain Res.24(3), 380–385 (2005).
  • Xu L, Anwyl R, Rowan MJ. Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387(6632), 497–500 (1997).
  • Kim JJ, Foy MR, Thompson RF. Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc. Natl Acad. Sci. USA 93(10), 4750–4753 (1996).
  • Rocher C, Spedding M, Munoz C, Jay TM. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb. Cortex 14(2), 224–229 (2004).
  • Kojima T, Matsumoto M, Togashi H et al. Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: an effect mediated via 5-HT1A receptors. Brain Res. 959(1), 165–168 (2003).
  • Shakesby AC, Anwyl R, Rowan MJ. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J. Neurosci.22(9), 3638–3644 (2002).
  • O’Connor JJ, Rowan MJ, Anwyl R. Use-dependent effects of acute and chronic treatment with imipramine and buspirone on excitatory synaptic transmission in the rat hippocampus in vivo. Naunyn. Schmiedebergs Arch. Pharmacol. 348(2), 158–163 (1993).
  • Stewart CA, Reid IC. Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology (Berl.) 148(3), 217–223 (2000).
  • Matsumoto M, Tachibana K, Togashi H et al. Chronic treatment with milnacipran reverses the impairment of synaptic plasticity induced by conditioned fear stress. Psychopharmacology (Berl.) 179(3), 606–612 (2005).
  • Battaglia F, Saxe MD, Davis D, Santarelli L, Hen R. Neurogenesis-dependant LTP in the adult dentate gyrus. Society for Neuroscience Abstract Po 31.18. (2004).
  • Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85(6), 2423–2431 (2001).
  • Brezun JM, Daszuta A. Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus 10(1), 37–46 (2000).
  • Banasr M, Hery M, Printemps R, Daszuta A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3), 450–460 (2004).
  • Huang GJ, Herbert J. The role of 5-HT(1A) receptors in the proliferation and survival of progenitor cells in the dentate gyrus of the adult hippocampus and their regulation by corticoids. Neuroscience,135(3), 803–813 (2005).
  • Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 25(6), 836–844 (2001).
  • Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog. Neuropsychopharmacol. Biol. Psych. 29(2), 261–265 (2005).
  • Thome J, Sakai N, Shin K et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20(11), 4030–4036 (2000).
  • Nakagawa S, Kim JE, Lee R et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J. Neurosci. 22(9), 3673–3682 (2002).
  • Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol. Psych. 49(9), 753–762 (2001).
  • Leutgeb JK, Frey JU, Behnisch T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA1 of mature rat hippocampal-organotypic cultures. Neuroscience 131(3), 601–610 (2005).
  • Newton SS, Thome J, Wallace TL et al. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressant-like effect. J. Neurosci.22(24), 10883–10890 (2002).
  • Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15(11), 7539–7547 (1995).
  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci.22(8), 3251–3261 (2002).
  • Saarelainen T, Hendolin P, Lucas G et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23(1), 349–357 (2003).
  • Scharfman H, Goodman J, Macleod A et al. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 192(2), 348–356 (2005).
  • Sairanen M, Lucas G, Ernfors P, Castren M, Castren E. Brain-derived neurotrophic factor and antidepressant drugs have different but co-ordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J. Neurosci.25(5), 1089–1094 (2005).
  • Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267(5204), 1658–1662 (1995).
  • Chen G, Kolbeck R, Barde YA, Bonhoeffer T, Kossel A. Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J. Neurosci.19(18), 7983–7990 (1999).
  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381(6584), 706–709 (1996).
  • Messaoudi E, Bardsen K, Srebro B, Bramham CR. Acute intrahippocampal infusion of BDNF induces lasting potentiation of synaptic transmission in the rat dentate gyrus. J. Neurophysiol.79(1), 496–499 (1998).
  • Ma YL, Wang HL, Wu HC, Wei CL, Lee EH. Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience 82(4), 957–967 (1998).
  • Pozzo-Miller LD, Gottschalk W, Zhang L et al. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci.19(12), 4972–4983 (1999).
  • Castren E. Is mood chemistry? Nature Rev. Neurosci.6(3), 241–246 (2005).
  • Lucassen PJ, Fuchs E, Czeh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol. Psych. 55(8), 789–796 (2004).
  • Post A, Crochemore C, Uhr M, Holsboer F, Behl C. Differential induction of NF-κB activity and neural cell death by antidepressants in vitro. Eur. J. Neurosci. 12(12), 4331–4337 (2000).
  • Kim JJ, Yoon KS. Stress: metaplastic effects in the hippocampus. Trends Neurosci. 21(12), 505–509 (1998).
  • Haddjeri N, Blier P, de Montigny C. Effect of the α-2 adrenoceptor antagonist mirtazapine on the 5-hydroxytryptamine system in the rat brain. J. Pharmacol. Exp. Ther. 277(2), 861–871 (1996).
  • Blier P, de Montigny C. Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21(2 Suppl.), 91S–98S (1999).
  • Duman RS. Pathophysiology of depression: the concept of synaptic plasticity. Eur. Psych. 17(Suppl. 3), 306–310 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.