43
Views
12
CrossRef citations to date
0
Altmetric
Review

Gene therapy for malignant glioma

Pages 479-488 | Published online: 09 Jan 2014

References

  • Black PM. Brain tumors. Part 1. N. Engl. J. Med.324(21), 1471–1476 (1991).
  • Black PM. Brain tumors. Part 2. N. Engl. J. Med.324(22), 1555–1564 (1991).
  • Mavilio F, Bordignon C. Gene therapy. Nature362(6418), 284 (1993).
  • Blaese RM, Culver KW, Miller AD et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science270(5235), 475–480 (1995).
  • Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science270(5235), 404–410 (1995).
  • Verma IM, Somia N. Gene therapy – promises, problems and prospects. Nature389(6648), 239–242 (1997).
  • Miller N, Vile R. Targeted vectors for gene therapy. FASEB J.9(2), 190–199 (1995).
  • Marchisone C, Pfeffer U, Del Grosso F et al. Progress towards gene therapy for cancer. J. Exp. Clin. Cancer Res.19(3), 261–270 (2000).
  • Galanis E, Vile R, Russell SJ. Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit. Rev. Oncol. Hematol.38(3), 177–192 (2001).
  • Anderson WF. Human gene therapy. Nature392(Suppl. 6679), 25–30 (1998).
  • Martuza RL, Malick A, Markert JM et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science252(5007), 854–856 (1991).
  • Shah AC, Benos D, Gillespie GY et al. Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J. Neurooncol.65(3), 203–226 (2003).
  • Ram Z, Culver KW, Oshiro EM et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nature Med.3(12), 1354–1361 (1997).
  • Shand N, Weber F, Mariani L et al. A Phase 1 2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European–Canadian Study Group. Hum. Gene Ther.10(14), 2325–2335 (1999).
  • Rainov NG. A Phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther.11(17), 2389–2401 (2000).
  • Goebel EA, Davidson BL, Zabner J et al. Adenovirus-mediated gene therapy for head and neck squamous cell carcinomas. Ann. Otol. Rhinol. Laryngol.105(7), 562–567 (1996).
  • Miller CR, Buchsbaum DJ, Reynolds PN et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res.58(24), 5738–5748 (1998).
  • Li Y, Pong RC, Bergelson JM et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res.59(2), 325–330 (1999).
  • Li D, Duan L, Freimuth P et al. Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin. Cancer Res.5(12), 4175–4181 (1999).
  • Hemmi S, Geertsen R, Mezzacasa A et al. The presence of human coxsackievirus and adenovirus receptor is associated with efficient adenovirus-mediated transgene expression in human melanoma cell cultures. Hum. Gene Ther.9(16), 2363–2373 (1998).
  • Asaoka K, Tada M, Sawamura Y et al. Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the coxsackievirus and adenovirus receptor. J. Neurosurg.92(6), 1002–1008 (2000).
  • Trask TW, Trask RP, Aguilar-Cordova E et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol. Ther.1(2), 195–203 (2000).
  • Bischoff JR, Kirn DH, Williams A et al. An adenovirus mutant that replicates selectively in p53 deficient human tumor cells. Science274(5286), 373–376 (1996).
  • Nemunaitis J, Ganly I, Khuri F et al. Selective replication and oncolysis in p53 mutant tumors with ONYX 015, an E1B 55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a Phase II trial. Cancer Res.60(22), 6359–6366 (2000).
  • Heise C, Sampson-Johannes A, Williams A et al. ONYX 015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med.3(6), 639–645 (1997).
  • Khuri FR, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX 015, a selectively-replicating adenovirus, in combination with cisplatin and 5 fluorouracil in patients with recurrent head and neck cancer. Nature Med.6(8), 879–885 (2000).
  • Chiocca EA, Abbed KM, Tatter S et al. A Phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX 015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol. Ther.10(5), 958–966 (2004).
  • Mineta T, Rabkin SD, Yazaki T et al. Attenuated multi-mutated herpes simplex virus 1 for the treatment of malignant gliomas. Nature Med.1(9), 938–943 (1995).
  • Hunter WD, Martuza RL, Feigenbaum F et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J. Virol.73(8), 6319–6326 (1999).
  • Markert JM, Medlock MD, Rabkin SD et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a Phase I trial. Gene Ther.7(10), 867–874 (2000).
  • Valyi-Nagy T, Fareed MU, O'Keefe JS et al. The herpes simplex virus type 1 strain 17+ g 34.5 deletion mutant 1716 is avirulent in SCID mice. J. Gen. Virol.75(Pt 8), 2059–2063 (1994).
  • Randazzo BP, Kesari S, Gesser RM et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology211(1), 94–101 (1995).
  • Kesari S, Randazzo BP, Valyi-Nagy T et al. Therapy of experimental human brain tumors using a neuroattenuated herpes simplex virus mutant. Lab. Invest.73(5), 636–648 (1995).
  • Rampling R, Cruickshank G, Papanastassiou V et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther.7(10), 859–866 (2000).
  • Harrow S, Papanastassiou V, Harland J et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther.11(22), 1648–1658 (2004).
  • Papanastassiou V, Rampling R, Fraser M et al. The potential for efficacy of the modified (ICP 34.5[-]) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther.9(6), 398–406 (2002).
  • Tyminski E, Leroy S, Terada K et al. Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res.65(15), 6850–6857 (2005).
  • Aghi M, Rabkin S, Martuza RL. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication. J. Natl Cancer Inst.98(1), 38–50 (2006).
  • Coffey MC, Strong JE, Forsyth PA et al. Reovirus therapy of tumors with activated Ras pathway. Science282(5392), 1332–1334 (1998).
  • Wilcox ME, Yang W, Senger D et al. Reovirus as an oncolytic agent against experimental human malignant gliomas. J. Natl Cancer Inst.93(12), 903–912 (2001).
  • Yang WQ, Lun X, Palmer CA et al. Efficacy and safety evaluation of human reovirus type 3 in immunocompetent animals: racine and nonhuman primates. Clin. Cancer Res.10(24), 8561–8576 (2004).
  • Oncolytics Biotech releases REOLYSIN Phase I clinical trial results. Expert Rev. Anticancer Ther.2(2), 139 (2002).
  • Reichard KW, Lorence RM, Cascino CJ et al. Newcastle disease virus selectively kills human tumor cells. J. Surg. Res.52(5), 448–453 (1992).
  • Phuangsab A, Lorence RM, Reichard KW et al. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett.172(1), 27–36 (2001).
  • Lorence RM, Katubig BB, Reichard KW et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Res.54(23), 6017–6021 (1994).
  • Lorence RM, Reichard KW, Katubig BB et al. Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J. Natl Cancer Inst.86(16), 1228–1233 (1994).
  • Csatary LK, Eckhardt S, Bukosza I et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect. Prev.17(6), 619–627 (1993).
  • Lorence RM, Pecora AL, Major PP et al. Overview of Phase I studies of intravenous administration of PV701, an oncolytic virus. Curr. Opin. Mol. Ther.5(6), 618–624 (2003).
  • Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH 68/H) in a patient with high-grade glioblastoma. JAMA281(17), 1588–1589 (1999).
  • Csatary LK, Gosztonyi G, Szeberenyi J et al. MTH 68/H oncolytic viral treatment in human high-grade gliomas. J. Neurooncol.67(12), 83–93 (2004).
  • Haas C, Ertel C, Gerhards R, Schirrmacher V. Introduction of adhesive and costimulatory immune functions into tumor cells by infection with Newcastle disease virus. Int. J. Oncol.13(6), 1105–1115 (1998).
  • Liau LM, Jensen ER, Kremen TJ et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res.62(8), 2287–2293 (2002).
  • Prins RM, Liau LM. Cellular immunity and immunotherapy of brain tumors. Front. Biosci.9, 3124–3136 (2004).
  • Miyatake S, Martuza RL, Rabkin SD. Defective herpes simplex virus vectors expressing thymidine kinase for the treatment of malignant glioma. Cancer Gene Ther.4(4), 222–228 (1997).
  • Parker JN, Gillespie GY, Love CE et al. Engineered herpes simplex virus expressing IL 12 in the treatment of experimental murine brain tumors. Proc. Natl Acad. Sci. USA97(5), 2208–2213 (2000).
  • Andreansky S, He B, van Cott J et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Ther.5(1), 121–130 (1998).
  • Liu Y, Ehtesham M, Samoto K et al. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther.9(1), 9–15 (2002).
  • Yoshikawa K, Kajiwara K, Ideguchi M et al. Immune gene therapy of experimental mouse brain tumor with adenovirus-mediated gene transfer of murine interleukin 4. Cancer Immunol. Immunother.49(1), 23–33 (2000).
  • Yamini B, Yu X, Gillespi.e., GY et al. Transcriptional targeting of adenovirally delivered tumor necrosis factor α by temozolomide in experimental glioblastoma. Cancer Res.64(18), 6381–6384 (2004).
  • Chen B, Timiryasova TM, Haghighat P et al. Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J. Immunother.24(1), 46–57 (2001).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways. Expert Rev. Anticancer Ther.3(5), 595–614 (2003).
  • Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nature Rev. Drug Discov.3(5), 430–446 (2004).
  • Maher EA, Furnari FB, Bachoo RM et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev.15(11), 1311–1333 (2001).
  • Ostman A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev.15(4), 275–286 (2004).
  • Guha A, Dashner K, Black PM et al. Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int. J. Cancer60(2), 168–173 (1995).
  • Newton HB. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther.4(1), 105–128 (2004).
  • Wechsler-Reya RJ. Analysis of gene expression in the normal and malignant cerebellum. Recent Prog. Horm. Res.58, 227–248 (2003).
  • Wechsler-Reya R, Scott MP. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001).
  • Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415(6870), 436–442 (2002).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell6(3), 229–240 (2004).
  • Ueki K, Ono Y, Henson JW et al. CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res.56(1), 150–153 (1996).
  • Fueyo J, Gomez-Manzano C, Alemany R et al. A mutant oncolytic adenovirus targeting the Rb pathway produces antiglioma effect in vivo. Oncogene19(1), 2–12 (2000).
  • Jiang H, Gomez-Manzano C, Alemany R et al. Comparative effect of oncolytic adenoviruses with E1A 55 kDa or E1B 55 kDa deletions in malignant gliomas. Neoplasia7(1), 48–56 (2005).
  • Gomez-Manzano C, Alonso MM, Yung WK et al. δ 24 increases the expression and activity of topoisomerase I and enhances the antiglioma effect of irinotecan. Clin. Cancer Res.12(2), 556–562 (2006).
  • Conrad C, Miller CR, Ji Y et al. δ24 hyCD adenovirus suppresses glioma growth in vivo by combining oncolysis and chemosensitization. Cancer Gene Ther.12(3), 284–294 (2005).
  • Inoue R, Moghaddam KA, Ranasinghe M et al. Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Ther.11(15), 1195–1204 (2004).
  • Wei MX, Li F, Ono Y et al. Effects on brain tumor cell proliferation by an adenovirus vector that bears the interleukin 4 gene. J. Neurovirol.4(2), 237–241 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.