81
Views
2
CrossRef citations to date
0
Altmetric
Review

Clinical and imaging metrics for monitoring disease progression in patients with multiple sclerosis

, , , , &
Pages 599-612 | Published online: 09 Jan 2014

References

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N. Engl. J. Med.343(13), 938–952 (2000).
  • Pozzilli C, Romano S, Cannoni S. Epidemiology and current treatment of multiple sclerosis in Europe today. J. Rehabil. Res.39(2), 175–185 (2002).
  • Harris JO, Frank JA, Patronas N, McFarlin DE, McFarland HF. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann. Neurol.29(5), 548–555 (1991).
  • Cutter GR. Measures of impairment and disability. In: Multiple Sclerosis Therapeutics Rudick RA, Goodkin DE (Eds), Martin Dunitz Ltd, London, UK, 19–30 (1999 ).
  • Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain127(Pt 7), 1463–1478 (2004).
  • Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol.58(6), 840–846 (2005).
  • Sharrack B, Hughes R, Soudain S et al. The psychometric properties of clinical rating scales used in multiple sclerosis. Brain122(Pt 1), 141–159 (1999).
  • Li DK, Paty DW. Magnetic resonance imaging results of the PRISMS trial: a randomized, double blind, placebo-controlled study of interferon-β1a in relapsing-remitting multiple sclerosis. Prevention of Relapses and disability by interferon-β1a subcutaneously in multiple sclerosis. Ann. Neurol.46(2), 197–206 (1999).
  • Leary SM, Miller DH, Stevenson VL, Brex PA, Chard DT, Thompson AJ. Interferon β-1a in primary progressive MS: an exploratory, randomized, controlled trial. Neurology60(1), 44–51 (2003).
  • Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology33(11), 1444–1452 (1983).
  • Pozzilli C, Bastianello S, Koudraivtseva T et al. Magnetic resonance imaging changes with recombinant human interferon-β-1a: a short-term study in relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry61(3), 251–258 (1996).
  • The IFNB Multiple Sclerosis Group and the University of British Columbia MS/MRI Analysis Group. Interferon β-1b in the treatment of multiple sclerosis. Final outcome of the randomised controlled trial. Neurology45(7), 1277–1285 (1995).
  • Jacobs LD, Cookfair DL, Rudick RA et al. Intramuscular interferon β 1a for disease progression in relapsing-remitting multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol.39(3), 285–294 (1996).
  • European Study on Interferon β-1b in Secondary-Progressive MS. Placebo-controlled multicentre randomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis. Lancet352(9139), 1491–1497 (1998).
  • Jacobs LD, Beck RW, Simon JH et al. Intramuscular interferon β-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N. Engl. J. Med.343(13), 898–904 (2000).
  • Comi G, Filippi M, Barkhof F et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet357(9268), 1576–1582 (2001).
  • The Prisms Study Group and the University of British Columbia MS/MRI Analysis Group. Prisms-4. Long-term efficacy of interferon-β-1a in relapsing MS. Neurology56(12), 628–1236 (2001).
  • Secondary Progressive Efficacy Clinical Trials of Recombinant Interferon β1a in MS (Spectrims) Study Group. Randomized controlled trial of interferon-β-1a in secondary progressive MS: clinical results. Neurology56(11), 1496–1504 (2001).
  • Durelli L, Verdun E, Barbero P et al. Every-other-day interferon β-1b versus once-weekly interferon β-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet359(9316), 1453–1460 (2002).
  • Panitch H, Miller A, Paty D, Weinshenker B. The North American Study Group on Interferon β-1b in Secondary Progressive MS. Interferon β-1b in secondary progressive MS: results from a 3-year controlled study. Neurology63(10), 1788–1795 (2004).
  • Ozakbas S, Ormeci B, Egemen I. Utilization of the multiple sclerosis functional composite in follow-up: relationship to disease phenotype, disability and treatment strategies. J. Neurol. Sci.232(1–2), 65–69 (2005).
  • Ozakbas S, Ormeci B, Egemen I. Utilization of the multiple sclerosis functional composite in follow-up: relationship to disease phenotype, disability and treatment strategies. J. Neurol. Sci.232(1–2), 65–69 (2005).
  • Cohen J, Fischer J, Bolibrush B et al. Intrarater and interrater reliability of the MS functional composite outcome measure. Neurology54(4), 802–806 (2000).
  • Cohen J, Cutter G, Fischer J et al. Use of the multiple sclerosis functional composite as an outcome measure in a Phase 3 clinical trial. Arch. Neurol.58(6), 961–967 (2001).
  • Cutter GR, Baier M, Rudick R et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain122(Pt 5), 871–882 (1999).
  • Patzold T, Schwengelbeck M, Ossege L-M et al. Changes of the MS functional composite and EDSS during and after treatment of relapses with methylprednisolone in patients with multiple sclerosis. Acta Neurol. Scand.105(3), 164–168 (2002).
  • Fachenecker P, Kumpfel T, Kallmann K et al. Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult. Scler.8(6), 523–526 (2002).
  • Hobart J, Riazi A, Thompson A et al. Getting the measure of spasticity in multiple sclerosis: the Multiple Sclerosis Spasticity Scale (MSSS-88). Brain129, 224–234 (2005).
  • Miller D, Ruddick R, Cutter G et al. Clinical significance of the multiple sclerosis functional composite relationship to patient-reported quality of life. Arch. Neurol.57(9), 1319–1324 (2000).
  • Fischer J, Larocca N, Miller DM, Ritvo PG, Andrews H, Paty D. Recent developments in the assessment of quality of life in multiple sclerosis (MS). Mult. Scler.5(4), 251–259 (1999).
  • Huijbregts SC, Kalkers NF, De Sonneville LM, De Groot V, Reuling IE, Polman CH. Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology63(2), 335–339 (2004).
  • Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology41(5), 685–691 (1991).
  • Comi G, Filippi M, Martinelli V et al. Brain MRI correlates of cognitive impairment in primary and secondary progressive multiple sclerosis. J. Neurol. Sci.132(2), 222–227 (1995).
  • Filippi M, Tortorella C, Rovaris M et al. Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry68(2), 157–161 (2000).
  • Benedict RH, Carone DA, Bakshi R. Correlating brain atrophy with cognitive dysfunction, mood disturbances, and personality disorder in multiple sclerosis. J. Neuroimaging14(3 Suppl.), 36S–45S (2004).
  • van Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI. Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn. Reson. Med.36(4), 632–636 (1996).
  • Zivadinov R, De Masi R, Nasuelli D et al. MRI techniques and cognitive impairment in the early Phase of relapsing-remitting multiple sclerosis. Neuroradiology43(4), 272–278 (2001).
  • Zivadinov R, Sepcic J, Nasuelli D et al. A longitudinal study of brain atrophy and cognitive disturbances in the early Phase of relapsing-remitting multiple sclerosis. J. Neurol. Neurosurg. Psychiatry70(6), 773–780 (2001).
  • Edwards SGM, Liu C, Blumhardt LD. Cognitive correlates of supratentorial atrophy on MRI in multiple sclerosis. Acta Neurol. Scand.104(4), 214–223 (2001).
  • Huber SJ, Bornstein RA, Rammohan KW, Christy JA, Chakeres DW, McGhee RB. Magnetic resonance imaging correlates of neuropsychological impairment in multiple sclerosis. J. Neuropsychiatry Clin. Neurosci.4(2), 152–158 (1992).
  • Rao SM, Bernardin L, Leo GJ, Ellington L, Ryan SB, Burg LS. Cerebral disconnection in multiple sclerosis. Relationship to atrophy of the corpus callosum. Arch. Neurol.46(8), 918–920 (1989).
  • Amato MP, Bartolozzi ML, Zipoli V et al. Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology63(1), 89–93 (2004).
  • Camp SJ, Stevenson VL, Thompson AJ et al. A longitudinal study of cognition in primary progressive multiple sclerosis. Brain128(12), 2891–2898 (2005).
  • Rao SM, Leo GJ, Haughton VM, St Aubin-Faubert P, Bernardin L. Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology39(2 Pt 1), 161–166 (1989).
  • Benedict RH, Zivadinov R, Carone DA et al. Regional lobar atrophy predicts memory impairment in multiple sclerosis. Am. J. Neroradiol.26(7), 1824–1831 (2005).
  • Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis: II. Impact on employment and social function. Neurology41(5), 692–696 (1991).
  • Amato MP, Ponziani G, Bracco L, Siracusa G, Amaducci L. Cognitive impairment in early-onset multiple sclerosis. Patterns, predictors, and impact on everyday life in a 4-year follow-up. Arch. Neurol.52(2), 168–172 (1995).
  • Knight RG, Devereux RC, Godfrey HP. Psychosocial consequences of caring for a spouse with multiple sclerosis. J. Clin. Exp. Neuropsychol.19(1), 7–19 (1997).
  • Benedict RH. Integrating cognitive function screening and assessment into theroutine care of multiple sclerosis patients. CNS Spectr.10(5), 384–391 (2005).
  • Swirsky-Sacchetti T, Field HL, Mitchell DR et al. The sensitivity of the mini-mental state exam in the white matter dementia of multiple sclerosis. J. Clin. Psychol.48(6), 779–786 (1992).
  • Benedict RH, Munschauer F, Linn R et al. Screening for multiple sclerosis cognitive impairment using a self-administered 15-item questionnaire. Mult. Scler.9(1), 95–101 (2003).
  • Benedict RH, Cox D, Thompson LL, Foley F, Weinstock-Guttman B, Munschauer F. Reliable screening for neuropsychological impairment in multiple sclerosis. Mult. Scler.10(6), 675–678 (2004).
  • Benedict RH, Fischer JS, Archibald CJ et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin. Neuropsychol.16(3), 381–397 (2002).
  • Wilken JA, Kane R, Sullivan CL et al. The utility of computerized neuropsychological assessment of cognitive dysfunction in patients with relapsing-remitting multiple sclerosis. Mult. Scler.9(2), 119–127 (2003).
  • Bagnato F, Frank J. The role of nonconventional magnetic resonance imaging techniques in demyelinating disorders. Curr. Neurol. Neurosci. Rep.3(3), 238–245 (2003).
  • Miller DH, Albert PS, Barkhof F et al. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann. Neurol.39(1), 6–16 (1996).
  • McFarland HF, Barkhof F, Antel J, Miller DH. The role of MRI as a surrogate outcome measure in multiple sclerosis. Mult. Scler.8(1), 40–51 (2002).
  • Miller DH, Rudge P, Johnson G et al. Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain111(Pt 4), 927–938 (1988).
  • Kermode AG, Thompson AJ, Tofts P et al. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis: pathogenetic and clinical implications. Brain113(Pt 5), 1477–1489 (1990).
  • Miller DH, Barkhof F, Nauta JJ. Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain116, 1077–1094 (1993).
  • McFarland HF, Frank JA, Albert PS et al. Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann. Neurol.32(6), 758–766 (1992).
  • Filippi M, Yousry T, Campi A et al. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with MS. Neurology46(2), 379–384 (1996).
  • Filippi M, Campi A, Martinelli V et al. Comparison of triple dose versus standard dose gadolinium-DTPA for detection of MRI enhancing lesions in patients with primary progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry59(5), 540–544 (1995).
  • Cotton F, Weiner HK, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology60(4), 640–646 (2003).
  • Gupta S, Solomon JM, Tasciyan TA et al. Interferon-β-1b effects on re-enhancing lesions in patients with multiple sclerosis. Mult. Scler.11(6), 658–668 (2005).
  • Bagnato F, Jeffries N, Richert N et al. Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain126(Pt 8), 1782–1789 (2003).
  • Campi A, Filippi M, Comi G, Scotti G, Gerevini S, Dousset V. Magnetisation transfer ratios of contrast-enhancing and nonenhancing lesions in multiple sclerosis. Neuroradiology38(2), 115–119 (1996).
  • Barkhof F, McGowan JC, van Waesberghe JH, Grossman RI. Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J. Neurol. Neurosurg. Psychiatry64(Suppl. 1), S77–S79 (1998).
  • Zivadinov R, Bagnato F, Nasuelli D et al. Short-term brain atrophy changes in relapsing-remitting multiple sclerosis. J. Neurol. Sci.223(20), 185–193 (2004).
  • Minneboo A, Uitdehaag BM, Ader HJ, Barkhof F, Polman CH, Castelijns JA. Patterns of enhancing lesion evolution in multiple sclerosis are uniform within patients. Neurology65(1), 56–61 (2005).
  • Kappos L, Moeri D, Radue EW et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet353(9157), 964–969 (1999).
  • Rudick Ra, Lee JC, Simon J et al. Defining interferon β response status in multiple sclerosis patients. Ann. Neurol.56(4), 548–555 (2004).
  • Li DKB, Zhao G, Paty DW. T2 hyperintensities: finding and significance. Neuroimaging Clin. N. Am.10(4), 717–738 (2000).
  • Barkhof F, Karas GB, van Walderveen MA. T1 hypointensities and axonal loss. Neuroimaging Clin. N. Am.10(4), 739–752 (2000).
  • van Walderveen MAA, Kamphorst W, Scheltens P et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology50(5), 1282–1288 (1998).
  • Zivadinov R, Bakshi R. Neurological disability and central nervous system atrophy in multiple sclerosis. In: Brain and Spinal Cord Atrophy in Multiple Sclerosis. Zivadinov R, Bakshi R(Eds). Nova Biomedical Books, NY, USA, 113–136 (2004).
  • Miller DH, Barkhof F, Frank JA, Parker GJM, Thompson AJ. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain125(Pt 8), 1676–1695 (2002).
  • Tedeschi G, Ravorgna L, Russo P et al. Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology65(2), 280–285 (2005).
  • Pagani E, Rocca MA, Gallo A et al. Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical phenotype. Am. J. Neroradiol.26(2), 341–346 (2005).
  • Losseff NA, Wang L, Lai HM et al. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain119(Pt 6), 2009–2019 (1996).
  • Dalton CM, Brex PA, Gordon R et al. Progressive ventricular enlargement in patients with clinically isolated syndromes is associated with the development of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry73(2), 141–147 (2002).
  • Rudick RA, Fischer E, Lee JC, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology53(8), 1698–1704 (1999).
  • Ge Y, Grossman RI, Udupa Y et al. Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology214(3), 665–670 (2000).
  • Stevenson VL, Miller DH, Leary SM et al. One year follow up study of primary and transitional progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry68(6), 713–718 (2000).
  • Finamore L, Ohayon JM, Calabrese A, Richert NS, McFarland H, Bagnato F. Yearly clinical and imaging follow-up of patients with multiple sclerosis: a 14year study. Mult. Scler.11(Suppl. 1) (2005) (Abstract 231).
  • Richert ND, Frank JA. Magnetization transfer imaging to monitor clinical trials in multiple sclerosis. Neurology53(5 Suppl. 3), S29–S32 (1999).
  • Arnold DL, De Stefano N, Narayanan S, Matthews PM. Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin. N. Am.10(4), 789–798 (2000).
  • Rovaris M, Gass A, Bammer R et al. Diffusion MRI in multiple sclerosis. Neurology65(10), 1526–1532 (2005).
  • Tartaglia C, Arnold DL. The role of MRS and fMRI in multiple sclerosis. Adv. Neurol.98, 185–202 (2006).
  • Clare S, Jezzard P. Rapid T1 mapping using multislice echo planar imaging. Magn. Reson. Med.45(4), 630–634 (2001).
  • Scheffler K, Hennig J. T1 Quantification with inversion recovery trueFISP. Magn. Reson. Med.45(4), 720–723 (2001).
  • Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn. Reson. Med.49, 515–526 (2003).
  • Barbosa S, Blumhardt LD, Roberts N, Lock T, Edwards RHT. Magnetic resonance relaxation time mapping in multiple sclerosis: normal appearing white matter and the “invisible” lesion load. Magn. Res. Imaging12(1), 33–42 (1994).
  • Armspach J-P, Gounot D, Rumbach L, Chambron J. In vivo determination of multiexponential T2 relaxation in the brain of patients with multiple sclerosis. Magn. Res. Imaging9(1), 107–113 (1991).
  • Haughton VM, Yetkin FZ, Rao SM et al. Quantitative MR in the diagnosis of multiple sclerosis. Magn. Reson. Med.26(1), 71–78 (1992).
  • Lacomis D, Osbakken M, Gross G. Spin-lattice relaxation (T1) Times of cerebral white matter in multiple sclerosis. Magn. Reson. Med.3(2), 194–202 (1986).
  • van Walderveen MAA, Kamphorst W, Scheltens P et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology50(5), 1282–1288 (1998).
  • Larsson HBW, Frederiksen J, Petersen J et al. Assessment of demyelination, oedema and gliosis by in vivo determination of T1 and T2 in the brain of patients with acute attack of multiple sclerosis. Magn. Reson. Med.11(3), 337–348 (1989).
  • Parry A, Clare S, Jenkinson M, Smith S, Palace J, Matthews PM. White matter and lesion T1 relaxation times increase in parallel and correlate with disability in multiple sclerosis. J. Neurol.249(9), 1279–1286 (2002).
  • Griffin CM, Parker GJM, Barker GJ, Thompson AJ, Miller DH. MTR and T1 provide complementary information in MS NAWM, but not in lesions. Mult. Scler.6(5), 327–331 (2000).
  • Lanczos C. Applied AnalysisPrentice-Hall, NJ, USA (1956).
  • Kutzelnigg A, Lucchinetti CF, Stadelmann C et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain128(Pt 11), 2705–2712 (2005).
  • Sailer M, Fischl B, Salat D et al. Focal thinning of the cerebral cortex in multiple sclerosis. Brain126(Pt 8), 1734–1744 (2003).
  • De Stefano N, Matthews PM, Filippi M et al. Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology60(7), 1157–1162 (2003).
  • Chen JT, Narayanan S, Collins DL, Smith SM, Matthews PM, Arnold DL. Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage23(3), 1168–1175 (2004).
  • Calabrese M, Cao M, Gupta S et al. Neocortical damage is early and diffuse in patients with multiple sclerosis. Mult. Scler.11(Suppl. 1), 9 (2005).
  • Brownell B, Hughes JT. The distribution of plaques in the cerebrum in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry25, 315–320 (1962).
  • Lumsden CE. The neuropathology of multiple sclerosis. In: Handbook of Clinical Neurology (Volume 9).Vinken PJ, Bruyn GW (Eds). Amsterdam, Netherlands 217–309 (1970).
  • Bo L, Vedeler CA, Nyland H, Trapp BD, Mork SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocytes infiltration. Mult. Scler.9(4), 323–331 (2003).
  • Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. Cortical lesions in multiple sclerosis. Brain122(Pt 1), 17–26 (1999).
  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neuritis, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol.50(3), 389–400 (2001).
  • Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol.62(7), 723–732 (2003).
  • Brink BP, Veerhuis R, Breij EC, van der Valk P, Dijkstra CD, Bo L. The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J. Neuropathol. Exp. Neurol.64(2), 147–155 (2005).
  • Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. Am. J. Neroradiol.26(3), 572–577 (2005).
  • Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J. Neurol.250(12), 1407–1419 (2003).
  • Geurts JJ, Pouwels PJW, Uitdehaag BMJ, Polman CH, Barkhof F, Castelijns JA. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology236(1), 254–260 (2005).
  • Bagnato F, Butman J, Gupta S et al.In vivo detection of cortical plaques by magnetic resonance imaging in patients with multiple sclerosis. Am. J. Neroradiol. (2006) (In press).
  • Bernasconi N, Arnold DL. Multispectral high-resolution MRI of cortical pathology in multiple sclerosis. Mult. Scler.11(Suppl. 1), 540 (2005).
  • Bagnato F, Talagala L, Calabrese A et al.In vivo visualization of cortical lesions by 3 Tesla magnetic resonance imaging in patients with multiple sclerosis. Mult. Scler.11(Suppl. 1), 670 (2005).
  • Tench CR, Morgan PS, Jaspan T, Auer DP, Constantinescu CS. Spinal cord imaging in multiple sclerosis. J. Neuroimaging15, 94S–102S (2005).
  • Rocca MA, Hickman SJ, Bo L et al. Imaging spinal cord damage in multiple sclerosis, J. Neuroimaging15, 297–304 (2005).
  • Pierre-Jerome C, Arslan A, Bekkelund SI. MRI of the spine and spinal cord: imaging techniques, normal anatomy, artifacts, and pitfalls. J. Manipul. Phys. Ther.23, 470–476 (2000).
  • Pestalozza IF, Pozzilli C, Di Legge S et al. Monthly brain magnetic resonance imaging scans in patients with clinically isolated syndrome. Mult. Scler.11(4), 390–394 (2005).
  • Miller D, Barckhof F, Montalban X et al. Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management. Lancet Neurol.4, 281–288 (2005).
  • Paolillo A, Piattella MC, Pantano P et al. The relationship between inflammation and atrophy in clinically isolated syndromes suggestive of multiple sclerosis: a monthly MRI study after triple-dose gadolinium-DTPA. J. Neurol.251(4), 432–439 (2004).
  • Fernando KT, McLean MA, Chard DT et al. Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain127, 1361–1369 (2004).
  • Hoult DI, Chen CN, Sank VJ. The field strength dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn. Reson. Med.3(5), 730–746 (1986).
  • Bottomley PA, Foster TH, Argersinger RE et al. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med. Phys.11(4), 425–448 (1984).
  • Lee DH, Vellet AD, Eliasziw M et al. MR imaging field strength: prospective evaluation of the diagnostic accuracy of mr for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology194(1), 257–262 (1995).
  • Jack CR, Berquist TH, Miller GM et al. Field strength in neuro-MR imaging: a comparison of 0.5 t and 1.5 T. J. Comput. Assist. Tomogr.14(4), 505–513 (1990).
  • Schima VW, Wimberger D, Schneider B, Stiglbauer R, Asenbaum S, Imhof H. Bedeutung der Magnetfeldstärke in der MR-Diagnostik der multiplen Sklerose: Ein Vergleich von 0,5 und 1,5T. Fortschr. Röntgenstr.58, 368–371 (1993).
  • Ertl-Wagner BB, Reith W, Sartor K. Low field-low cost: can low-field magnetic resonance systems replace high-field magnetic resonance systems in the diagnostic assessment of multiple sclerosis patients? Eur. Radiol.11(8), 1490–1494 (2001).
  • Sicotte NL, Voskuhl RR, Bouvier S, Klutch R, Cohen MS, Mazziotta JC. Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest. Radiol.38(7), 423–427 (2003).
  • Erskine MK, Cook LL, Riddle JR, Mitchell JR, Karlik SJ. Resolution-dependent estimates of multiple sclerosis lesion loads. Can. J. Neurol. Sci.32, 205–212 (2005).
  • Keiper MD, Grossman RI, Hirsch JA et al. MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5 T and 4 T. Am. J. Neroradiol.19(8), 1489–1493 (1998).
  • Desai N, Runge VM. Contrast use at low field: a review. Top. Magn. Reson. Imaging14(5), 360–364 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.