59
Views
21
CrossRef citations to date
0
Altmetric
Review

Nonsteroidal anti-inflammatory drugs in Parkinson’s disease: possible involvement of quinone formation

&
Pages 1313-1325 | Published online: 10 Jan 2014

References

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology38, 1285–1291 (1988).
  • Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol. Cell. Neurosci.16, 724–739 (2000).
  • Hunot S, Hartmann A, Hirsch EC. The inflammatory response in the Parkinson brain. Clin. Neurosci. Res.1, 434–443 (2001).
  • McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology42, 447–449 (1992).
  • McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev.21, 195–218 (1995).
  • Gottschall PE. β-Amyloid induction of gelatinase B secretion in cultured microglia: inhibition by dexamethasone and indomethacin. Neuroreport7, 3077–3080 (1996).
  • Netland EE, Newton JL, Majocha RE, Tate BA. Indomethacin reverses the microglial response to amyloid β-protein. Neurobiol. Aging19, 201–204 (1998).
  • Lim GP, Yang F, Chu T et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci.20, 5709–5714 (2000).
  • Bisaglia M, Venezia V, Piccioli P et al. Acetaminophen protects hippocampal neurons and PC12 cultures from amyloid β-peptides induced oxidative stress and reduces NF-kB activation. Neurochem. Int.41, 43–54 (2002).
  • McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology47, 425–432 (1996).
  • Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology48, 626–632 (1997).
  • in’t Veld BA, Launer LJ, Hoes AW et al. NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol. Aging19, 607–611 (1998).
  • Aubin N, Curet O, Deffois A, Carter C. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J. Neurochem.71, 1635–1642 (1998).
  • Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch. Pharmacol.360, 256–261 (1999).
  • Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse39, 167–174 (2001).
  • Casper D, Yaparpalvi U, Rempel N, Werner P. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro.Neurosci. Lett.289, 201–204 (2000).
  • Chen H, Zhang SM, Hernan MA et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch. Neurol.60, 1059–1064 (2003).
  • Chen H, Jacobs E, Schwarzschild MA et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann. Neurol.58, 963–967 (2005).
  • Asanuma M, Miyazaki I, Ogawa N. Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res.5, 165–176 (2003).
  • Asanuma M, Miyazaki I, Diaz-Corrales FJ, Ogawa N. Quinone formation as dopaminergic neuron-specific oxidative stress in pathogenesis of sporadic Parkinson’s disease and neurotoxin-induced parkinsonism. Acta Med. Okayama58, 221–233 (2004).
  • Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol.231, 232–235 (1971).
  • Engineer DM, Niederhauser U, Piper PJ, Sirois P. Release of mediators of anaphylaxis: inhibition of prostaglandin synthesis and the modification of release of slow reacting substance of anaphylaxis and histamine. Br. J. Pharmacol.62, 61–66 (1978).
  • Humes JL, Winter CA, Sadowski SJ, Kuehl FA Jr. Multiple sites on prostaglandin cyclooxygenase are determinants in the action of nonsteroidal antiinflammatory agents. Proc. Natl Acad. Sci. USA78, 2053–2056 (1981).
  • Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem.268, 6610–6614 (1993).
  • Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl Acad. Sci. USA90, 11693–11697 (1993).
  • Furst DE. Are there differences among nonsteroidal antiinflammatory drugs? Comparing acetylated salicylates, nonacetylated salicylates, and nonacetylated nonsteroidal antiinflammatory drugs. Arthritis Rheum.37, 1–9 (1994).
  • Vane J. Towards a better aspirin. Nature367, 215–216 (1994).
  • Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron11, 371–386 (1993).
  • Tocco G, Freire-Moar J, Schreiber SS et al. Maturational regulation and regional induction of cyclooxygenase-2 in rat brain: implications for Alzheimer’s disease. Exp. Neurol.144, 339–349 (1997).
  • Hirst WD, Young KA, Newton R et al. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system. Mol. Cell. Neurosci.13, 57–68 (1999).
  • Basu A, Krady JK, O’Malley M et al. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J. Neurosci.22, 6071–6082 (2002).
  • Yamagata K, Matsumura K, Inoue W et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J. Neurosci.21, 2669–2677 (2001).
  • Sasaki T, Kitagawa K, Yamagata K et al. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. J. Cereb. Blood Flow Metab.24, 107–113 (2004).
  • Teismann P, Tieu K, Choi DK et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc. Natl Acad. Sci. USA100, 5473–5478 (2003).
  • Jantzen PT, Connor KE, DiCarlo G et al. Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J. Neurosci.22, 2246–2254 (2002).
  • Salvemini D, Misko TP, Masferrer JL et al. Nitric oxide activates cyclooxygenase enzymes. Proc. Natl Acad. Sci. USA90, 7240–7244 (1993).
  • López-Farré A, Caramelo C, Esteban A et al. Effects of aspirin on platelet-neutrophil interactions. Role of nitric oxide and endothelin-1. Circulation91, 2080–2088 (1995).
  • López-Farré A, Riesco A, Digiuni E et al. Aspirin-stimulated nitric oxide production by neutrophils after acute myocardial ischemia in rabbits. Circulation94, 83–87 (1996).
  • Kim H, Lee E, Shin T, Chung C, An N. Inhibition of the induction of the inducible nitric oxide synthase in murine brain microglial cells by sodium salicylate. Immunology95, 389–394 (1998).
  • Du ZY, Li XY. Inhibitory effects of indomethacin on interleukin-1 and nitric oxide production in rat microglia in vitro.Int. J. Immunopharmacol.21, 219–225 (1999).
  • Amin AR, Vyas P, Attur M et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc. Natl Acad. Sci. USA 92, 7926–7930 (1995).
  • Kepka-Lenhart D, Chen LC, Morris SMJ. Novel actions of aspirin and sodium salicylate: discordant effects on nitric oxide synthesis and induction of nitric oxide synthase mRNA in a murine macrophage cell line. J. Leukoc. Biol.59, 840–846 (1996).
  • Chen L, Salafranca MN, Mehta JL. Cyclooxygenase inhibition decreases nitric oxide synthase activity in human platelets. Am. J. Physiol.H1854–H1859 (1997).
  • Sanchez de Miguel L, de Frutos T, Gonzalez-Fernandez F et al. Aspirin inhibits inducible nitric oxide synthase expression and tumour necrosis factor-α release by cultured smooth muscle cells. Eur. J. Clin. Invest.29, 93–99 (1999).
  • Katsuyama K, Shichiri M, Kato H et al. Differential inhibitory actions by glucocorticoid and aspirin on cytokine-induced nitric oxide production in vascular smooth muscle cells. Endocrinology140, 2183–2190 (1999).
  • Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ. Res.78, 759–768 (1996).
  • Kwon G, Hill JR, Corbett JA, McDaniel ML. Effects of aspirin on nitric oxide formation and de novo protein synthesis by RINm5F cells and rat islets. Mol. Pharmacol.52, 398–405 (1997).
  • Sakitani K, Kitade H, Inoue K et al. The anti-inflammatory drug sodium salicylate inhibits nitric oxide formation induced by interleukin-1β at a translational step, but not at a transcriptional step, in hepatocytes. Hepatology25, 416–420 (1997).
  • Kopp E, Ghosh S. Inhibition of NF-κB by sodium salicylate and aspirin. Science265, 956–959 (1994).
  • Frantz B, O’Neill EA. The effect of sodium salicylate and aspirin on NF-κB. Science270, 2017–2019 (1995).
  • Weber C, Erl W, Pietsch A, Weber PC. Aspirin inhibits nuclear factor-κB mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation91, 1914–1917 (1995).
  • Grilli M, Pizzi M, Memo M, Spano P. Neuroprotection by aspirin and sodium salicylate through blockade of NF-κB activation. Science274, 1383–1385 (1996).
  • Aeberhard EE, Henderson SA, Arabolos NS et al. Nonsteroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene. Biochem. Biophys. Res. Commun.208, 1053–1059 (1995).
  • Lipton SA. Janus faces of NF-κB: neurodestruction versus neuroprotection. Nat. Med.3, 20–22 (1997).
  • Bauer MK, Lieb K, Schulze-Osthoff K et al. Expression and regulation of cyclooxygenase-2 in rat microglia. Eur. J. Biochem.243, 726–731 (1997).
  • Murphy S, Simmons ML, Agullo L et al. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci.16, 323–328 (1993).
  • Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-κB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J.12, 2005–2015 (1993).
  • Simpson CS, Morris BJ. Activation of nuclear factor κB by nitric oxide in rat striatal neurones: differential inhibition of the p50 and p65 subunits by dexamethasone. J. Neurochem.73, 353–361 (1999).
  • O’Neill LAJ, Kaltschmidt C. NF-κB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci.20, 252–258 (1997).
  • Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem.76, 1895–1904 (2001).
  • Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem.272, 3406–3410 (1997).
  • Weggen S, Eriksen JL, Das P et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature414, 212–216 (2001).
  • Elbrecht A, Chen Y, Cullinan CA et al. Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors γ1 and γ2. Biochem. Biophys. Res. Commun.224, 431–437 (1996).
  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature391, 79–82 (1998).
  • Yang XY, Wang LH, Chen T et al. Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT. J. Biol. Chem.275, 4541–4544 (2000).
  • Jiang C, Ting AT, Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature391, 82–86 (1998).
  • Rossi A, Kapahi P, Natoli G et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature403, 103–108 (2000).
  • Heneka MT, Feinstein DL, Galea E et al. Peroxisome proliferator-activated receptor γ agonists protect cerebellar granule cells from cytokine-induced apoptotic cell death by inhibition of inducible nitric oxide synthase. J. Neuroimmunol.100, 156–168 (1999).
  • Heneka MT, Klockgether T, Feinstein DL. Peroxisome proliferator-activated receptor-γ ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo.J. Neurosci.20, 6862–6867 (2000).
  • Kitamura Y, Kakimura J, Matsuoka Y et al. Activators of peroxisome proliferator-activated receptor-γ (PPARγ) inhibit inducible nitric oxide synthase expression but increase heme oxygenase-1 expression in rat glial cells. Neurosci. Lett.262, 129–132 (1999).
  • Bernardo A, Levi G, Minghetti L. Role of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and its natural ligand 15-deoxy-Ε12, 14-prostaglandin J2 in the regulation of microglial functions. Eur. J. Neurosci.12, 2215–2223 (2000).
  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J. Neurosci.20, 558–567 (2000).
  • Landreth GE, Heneka MT. Anti-inflammatory actions of peroxisome proliferator-activated receptor γ agonists in Alzheimer’s disease. Neurobiol. Aging22, 937–944 (2001).
  • Kielian T, Drew PD. Effects of peroxisome proliferator-activated receptor-γ agonists on central nervous system inflammation. J. Neurosci. Res.71, 315–325 (2003).
  • Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol. Sci.24, 395–401 (2003).
  • Hunot S, Brugg B, Ricard D et al. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl Acad. Sci. USA94, 7531–7536 (1997).
  • Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J. Neural Transm. Suppl.60, 277–290 (2000).
  • Mirza B, Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience95, 425–432 (2000).
  • Castano A, Herrera AJ, Cano J, Machado A. Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem.70, 1584–1592 (1998).
  • Gao HM, Jiang J, Wilson B et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J. Neurochem.81, 1285–1297 (2002).
  • Stern EL, Quan N, Proescholdt MG, Herkenham M. Spatiotemporal induction patterns of cytokine and related immune signal molecule mRNAs in response to intrastriatal injection of lipopolysaccharide. J. Neuroimmunol.109, 245–260 (2000).
  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp. Neurol.156, 50–61 (1999).
  • Sherer TB, Betarbet R, Kim JH, Greenamyre JT. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci. Lett.341, 87–90 (2003).
  • Gao HM, Hong JS, Zhang W, Liu B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci.22, 782–790 (2002).
  • Gao HM, Liu B, Hong JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci.23, 6181–6187 (2003).
  • Mohanakumar KP, Muralikrishnan D, Thomas B. Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced neurotoxicity. Brain Res.864, 281–290 (2000).
  • Carrasco E, Casper D, Werner P. Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity. J. Neurosci. Res.81, 121–131 (2005).
  • Kurkowska-Jastrzebska I, Babiuch M, Joniec I et al. Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice. Int. Immunopharmacol.2, 1213–1218 (2002).
  • Breidert T, Callebert J, Heneka MT et al. Protective action of the peroxisome proliferator-activated receptor-γ agonist pioglitazone in a mouse model of Parkinson’s disease. J. Neurochem.82, 615–624 (2002).
  • Carrasco E, Werner P. Selective destruction of dopaminergic neurons by low concentrations of 6-OHDA and MPP+: protection by acetylsalicylic acid aspirin. Parkinsonism Relat. Disord.8, 407–411 (2002).
  • Betarbet R, Sherer TB, MacKenzie G et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci.3, 1301–1306 (2000).
  • Sherer TB, Betarbet R, Stout AK et al. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J. Neurosci.22, 7006–7015 (2002).
  • Sakka N, Sawada H, Izumi Y et al. Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone. Neuroreport14, 2425–2428 (2003).
  • Choi HJ, Kim SW, Lee SY, Hwang O. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J. Neurochem.86, 143–152 (2003).
  • Choi HJ, Lee SY, Cho Y, Hwang O. Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson’s disease. Neurochem. Int.46, 329–335 (2005).
  • Machida Y, Chiba T, Takayanagi A et al. Common anti-apoptotic roles of parkin and alpha-synuclein in human dopaminergic cells. Biochem. Biophys. Res. Commun.332, 233–240 (2005).
  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat. Med.11, 1214–1221 (2005).
  • Sulzer D, Bogulavsky J, Larsen KE et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA97, 11869–11874 (2000).
  • Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox. Res.1, 181–195 (2000).
  • Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol.14, 633–643 (1978).
  • Tse DC, McCreery RL, Adams RN. Potential oxidative pathways of brain catecholamines. J. Med. Chem.19, 37–40 (1976).
  • Korytowski W, Sarna T, Kalyanaraman B, Sealy RC. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry. Biochim. Biophys. Acta924, 383–392 (1987).
  • Rosei MA, Blarzino C, Foppoli C, Mosca L, Coccia R. Lipoxygenase-catalyzed oxidation of catecholamines. Biochem. Biophys. Res. Commun.200, 344–350 (1994).
  • Hastings TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J. Neurochem.64, 919–924 (1995).
  • Foppoli C, Coccia R, Cini C, Rosei MA. Catecholamines oxidation by xanthine oxidase. Biochim. Biophys. Acta1334, 200–206 (1997).
  • Olanow CW, Jankovic J. Neuroprotective therapy in Parkinson’s disease and motor complications: a search for a pathogenesis-targeted, disease-modifying strategy. Mov. Disord.20(Suppl. 11), S3–S10 (2005).
  • Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med.351, 2498–2508 (2004).
  • Ogawa N, Tanaka K, Asanuma M. Bromocriptine markedly suppress levodopa-induced abnormal increase of dopamine turnover in the parkinsonian striatum. Neurochem. Res.25, 755–758 (2000).
  • Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N. Dopamine agonist pergolide prevents levodopa-induced quinoprotein formation in parkinsonian striatum and shows quenching effects on dopamine-semiquinone generated in vitro.Clin. Neuropharmacol.28, 155–160 (2005).
  • Asanuma M, Miyazaki I, Diaz-Corrales FJ et al. Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generated in vitro.Neurol. Res.27, 533–539 (2005).
  • Fornstedt B, Rosengren E, Carlsson A. Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology25, 451–454 (1986).
  • Ito S, Fujita K. Conjugation of dopa and 5-S-cysteinyldopa with cysteine mediated by superoxide radical. Biochem. Pharmacol.31, 2887–2889 (1982).
  • Lai CT, Yu PH. Dopamine- and L-β-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem. Pharmacol.53, 363–372 (1997).
  • LaVoie MJ, Hastings TG. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J. Neurochem.73, 2546–2554 (1999).
  • Pardo B, Mena MA, Casarejos MJ, Paino CL, De Yebenes JG. Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants. Brain Res.682, 133–143 (1995).
  • Xu Y, Stokes AH, Roskoski R Jr, Vrana KE. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J. Neurosci. Res.54, 691–697 (1998).
  • Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J. Neurochem.73, 1309–1317 (1999).
  • Whitehead RE, Ferrer JV, Javitch JA, Justice JB. Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J. Neurochem.76, 1242–1251 (2001).
  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science294, 1346–1349 (2001).
  • Goldberg MS, Lansbury PTJ. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat. Cell Biol.2, E115–E119 (2000).
  • Conway KA, Lee SJ, Rochet JC et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA97, 571–576 (2000).
  • Volles MJ, Lee SJ, Rochet JC et al. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry40, 7812–7819 (2001).
  • Kuhn DM, Arthur R Jr. Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J. Neurosci.18, 7111–7117 (1998).
  • Baez S, Linderson Y, Segura-Aguilar J. Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochem. Mol. Med.54, 12–18 (1995).
  • Drukarch B, van Muiswinkel FL. Drug treatment of Parkinson’s disease. Time for phase II. Biochem. Pharmacol.59, 1023–1031 (2000).
  • Paris I, Dagnino-Subiabre A, Marcelain K et al. Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J. Neurochem.77, 519–529 (2001).
  • Segura-Aguilar J, Metodiewa D, Welch CJ. Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochim. Biophys. Acta1381, 1–6 (1998).
  • Smythies J. The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: functional interrelationships in health and disease: a review-discussion. Neurotox. Res.1, 27–39 (1999).
  • Solano F, Hearing VJ, Garcia-Borron JC. Neurotoxicity due to o-quinone: neuromelanin formation and possible mechanisms for o-quinone detoxification. Neurotox. Res.1, 153–169 (2000).
  • Diaz-Veliz G, Mora S, Dossi MT et al. Behavioral effects of aminochrome and dopachrome injected in the rat substantia nigra. Pharmacol. Biochem. Behav.73, 843–850 (2002).
  • Miyazaki I, Asanuma M, Diaz-Corrales FJ et al. Methamphetamine-induced dopaminergic neurotoxicity is regulated by quinone formation-related molecules. FASEB J.20, 571–573 (2006).
  • Berman SB, Hastings TG. Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J. Neurochem.73, 1127–1137 (1999).
  • Li H, Dryhurst G. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease. J. Neurochem.69, 1530–1541 (1997).
  • Izumi Y, Sawada H, Yamamoto N et al. Iron accelerates the conversion of dopamine-oxidized intermediates into melanin and provides protection in SH-SY5Y cells. J. Neurosci. Res.82, 126–137 (2005).
  • Izumi Y, Sawada H, Sakka N et al. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J. Neurosci. Res.79, 849–860 (2005).
  • Mattammal MB, Strong R, Lakshmi VM, Chung HD, Stephenson AH. Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease. J. Neurochem.64, 1645–1654 (1995).
  • Cheng FC, Kuo JS, Chia LG, Dryhurst G. Elevated 5-S-cysteinyldopamine/ homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the pathoetiology of Parkinson’s disease. J. Neural Transm.103, 433–446 (1996).
  • Spencer JP, Jenner P, Daniel SE et al. Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem.71, 2112–2122 (1998).
  • Fornai F, Lenzi P, Gesi M et al. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition. J. Neurosci.23, 8955–8966 (2003).
  • Keller JN, Huang FF, Dimayuga ER, Maragos WF. Dopamine induces proteasome inhibition in neural PC12 cell line. Free Radic. Biol. Med.29, 1037–1042 (2000).
  • Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl Acad. Sci. USA93, 1956–1961 (1996).
  • Haque ME, Asanuma M, Higashi Y et al. Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim. Biophys. Acta1619, 39–52 (2003).
  • Cadenas E, Mira D, Brunmark A et al. Effect of superoxide dismutase on the autoxidation of various hydroquinones – a possible role of superoxide dismutase as a superoxide:semiquinone oxidoreductase. Free Radic. Biol. Med.5, 71–79 (1988).
  • Haque ME, Asanuma M, Higashi Y et al. Overexpression of Cu-Zn superoxide dismutase protects neuroblastoma cells against dopamine cytotoxicity accompanied by increase in their glutathione level. Neurosci. Res.47, 31–37 (2003).
  • Offen D, Ziv I, Sternin H, Melamed E, Hochman A. Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp. Neurol.141, 32–39 (1996).
  • The Parkinson Study Group. Effects of deprenyl on progression of disability in early Parkinson’s disease. N. Engl. J. Med.321, 1364–1371 (1989).
  • Schultzberg M, Segura-Aguilar J, Lind C. Distribution of DT diaphorase in the rat brain: biochemical and immunohistochemical studies. Neuroscience27, 763–776 (1988).
  • Segura-Aguilar J, Lind C. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem. Biol. Interact.72, 309–324 (1989).
  • Baez S, Segura-Aguilar J, Widersten M, Johansson AS, Mannervik B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem. J.324, 25–28 (1997).
  • Segura-Aguilar J, Baez S, Widersten M, Welch CJ, Mannervik B. Human class Mu glutathione transferases, in particular isoenzyme M2–2, catalyze detoxication of the dopamine metabolite aminochrome. J. Biol. Chem.272, 5727–5731 (1997).
  • Munday R, Smith BL, Munday CM. Effects of butylated hydroxyanisole and dicoumarol on the toxicity of menadione to rats. Chem. Biol. Interact.108, 155–170 (1998).
  • Duffy S, So A, Murphy TH. Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J. Neurochem.71, 69–77 (1998).
  • Hara H, Ohta M, Ohta K, Kuno S, Adachi T. Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Mol. Brain Res.119, 125–131 (2003).
  • Asanuma M, Miyazaki I, Ogawa N. Neuroprotective effects of nonsteroidal anti-inflammatory drugs on neurodegenerative diseases. Curr. Pharm. Des.10, 695–700 (2004).
  • Elsisi NS, Darling-Reed S, Lee EY, Oriaku ET, Soliman KF. Ibuprofen and apigenin induce apoptosis and cell cycle arrest in activated microglia. Neurosci. Lett.375, 91–96 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.