293
Views
22
CrossRef citations to date
0
Altmetric
Review

Ubiquitin proteasome system as a pharmacological target in neurodegeneration

, , &
Pages 1337-1347 | Published online: 10 Jan 2014

References

  • Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron40(2), 427–446 (2003).
  • Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME. Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci.21(12), 516–520 (1998).
  • Scheper W, Hol EM. Protein quality control in Alzheimer’s disease: a fatal saviour. Curr. Drug Targets. CNS. Neurol. Disord.4(3), 283–292 (2005).
  • Ross CA, Poirier MA. Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol.6(11), 891–898 (2005).
  • Varshavsky A. Regulated protein degradation. Trends Biochem. Sci.30(6), 283–286 (2005).
  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature426(6968), 895–899 (2003).
  • Hol EM, van Leeuwen FW, Fischer DF. The proteasome in Alzheimer’s disease and Parkinson’s disease: lessons from ubiquitin B+1. Trends Mol. Med.11(11), 488–495 (2005).
  • de Vrij FM, Fischer DF, van Leeuwen FW, Hol EM. Protein quality control in Alzheimer’s disease by the ubiquitin proteasome system. Prog. Neurobiol.74(5), 249–270 (2004).
  • Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta1695(1–3), 55–72 (2004).
  • Gao M, Karin M. Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Mol. Cell19(5), 581–593 (2005).
  • Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol.8(6), 610–616 (2004).
  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J.19(1), 94–102 (2000).
  • Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol.5(3), 177–187 (2004).
  • Navon A, Goldberg AL. Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol. Cell8(6), 1339–1349 (2001).
  • Hartmann-Petersen R, Seeger M, Gordon C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci.28(1), 26–31 (2003).
  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature416(6882), 763–767 (2002).
  • Hu M, Li P, Song L et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J.24(21), 3747–3756 (2005).
  • Stone M, Hartmann-Petersen R, Seeger M, Bech-Otschir D, Wallace M, Gordon C. Uch2/Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J. Mol. Biol.344(3), 697–706 (2004).
  • Nijman SM, Luna-Vargas MP, Velds A et al. A genomic and functional inventory of deubiquitinating enzymes. Cell123(5), 773–786 (2005).
  • Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta1695(1–3), 189–207 (2004).
  • Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL. A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J. Virol.79(24), 15582–15585 (2005).
  • Ratia K, Saikatendu KS, Santarsiero BD et al. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl Acad. Sci. USA103(15), 5717–5722 (2006).
  • Richter-Landsberg C, Goldbaum O. Stress proteins in neural cells: functional roles in health and disease. Cell Mol. Life Sci.60(2), 337–349 (2003).
  • Lee S, Tsai FT. Molecular chaperones in protein quality control. J. Biochem. Mol. Biol.38(3), 259–265 (2005).
  • Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat. Cell Biol.7(8), 766–772 (2005).
  • Yoneda T, Urano F, Ron D. Transmission of proteotoxicity across cellular compartments. Genes Dev.16(11), 1307–1313 (2002).
  • Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol.143(7), 1883–1898 (1998).
  • Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol.10(12), 524–530 (2000).
  • Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr. Opin. Cell Biol.17(4), 415–422 (2005).
  • Levine B, Yuan J. Autophagy in cell death: an innocent convict? J. Clin. Invest.115(10), 2679–2688 (2005).
  • Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem.280(48), 40282–40292 (2005).
  • Iwata A, Christianson JC, Bucci M et al. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl Acad. Sci. USA102(37), 13135–13140 (2005).
  • Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441(7095), 885–889 (2006).
  • Komatsu M, Waguri S, Chiba T et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441(7095), 880–884 (2006).
  • Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol.14(1), 20–28 (2004).
  • Kopito RR. Biosynthesis and degradation of CFTR. Physiol. Rev.79(1 Suppl.), S167–S173 (1999).
  • Egan ME, Glockner-Pagel J, Ambrose C et al J. Calcium-pump inhibitors induce functional surface expression of δ F508-CFTR protein in cystic fibrosis epithelial cells. Nat. Med.8(5), 485–492 (2002).
  • Mall M, Kunzelmann K. Correction of the CF defect by curcumin: hypes and disappointments. Bioessays27(1), 9–13 (2005).
  • Powell K, Zeitlin PL. Therapeutic approaches to repair defects in deltaF508 CFTR folding and cellular targeting. Adv. Drug Deliv. Rev.54(11), 1395–1408 (2002).
  • Assereto S, Stringara S, Sotgia F et al. Pharmacological rescue of the dystrophin-glycoprotein complex in Duchenne and Becker skeletal muscle explants by proteasome inhibitor treatment. Am. J. Physiol. Cell Physiol.290(2), C577–C582 (2006).
  • Bonifati V, Oostra BA, Heutink P. Unraveling the pathogenesis of Parkinson’s disease-the contribution of monogenic forms. Cell Mol. Life Sci.61(14), 1729–1750 (2004).
  • Ding Q, Dimayuga E, Keller JN. Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid. Redox. Signal.8(1–2), 163–172 (2006).
  • Chondrogianni N, Gonos ES. Proteasome dysfunction in mammalian aging: steps and factors involved. Exp. Gerontol.40(12), 931–938 (2005).
  • Farout L, Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid. Redox. Signal.8(1–2), 205–216 (2006).
  • Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology66(2 Suppl. 1), S7–S19 (2006).
  • Cripps D, Thomas S, Jeng Y, Yang F, Davies P, Yang A. Alzheimer’s-disease-specific conformation of hyperphosphorylated phf-tau Is polyubiquitinated through lys-48, lys-11, and lys-6 ubiquitin conjugation. J. Biol. Chem.281(16), 10825–10838 (2006).
  • Zhang M, Windheim M, Roe SM et al. Chaperoned ubiquitylation-crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell20(4), 525–538 (2005).
  • Petrucelli L, Dickson D, Kehoe K et al. CHIP and Hsp70 regulate Tau ubiquitination, degradation and aggregation. Hum. Mol. Genet.13(7), 703–714 (2004).
  • Shang F, Deng G, Liu Q et al. Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J. Biol. Chem.280(21), 20365–20374 (2005).
  • Fischer DF, de Vos RA, van Dijk R et al. Disease-specific accumulation of mutant ubiquitin as a marker for proteasomal dysfunction in the brain. FASEB J.17(14), 2014–2024 (2003).
  • van Leeuwen FW, van Tijn P, Sonnemans MA et al. Frameshift proteins in autosomal dominant forms of Alzheimer disease and other tauopathies. Neurology66(2 Suppl. 1), S86–S92 (2006).
  • van Leeuwen FW, de Kleijn DP, van den Hurk HH et al. Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer’s and down patients. Science279(5348), 242–247 (1998).
  • de Vrij FM, Sluijs JA, Gregori L et al. Mutant ubiquitin expressed in Alzheimer’s disease causes neuronal death. FASEB J.15(14), 2680–2688 (2001).
  • Ding Q, Markesbery WR, Chen Q, Li F, Keller JN. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci.25(40), 9171–9175 (2005).
  • Ding Q, Dimayuga E, Markesbery WR, Keller JN. Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J.20(8), 1055–1063 (2006).
  • McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp. Neurol.179(1), 38–46 (2003).
  • Furukawa Y, Vigouroux S, Wong H et al. Brain proteasomal function in sporadic Parkinson’s disease and related disorders. Ann. Neurol.51(6), 779–782 (2002).
  • McNaught KS, Belizaire R, Jenner P, Olanow CW, Isacson O. Selective loss of 20S proteasome α-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci. Lett.326(3), 155–158 (2002).
  • Blandini F, Sinforiani E, Pacchetti C et al. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology66(4), 529–534 (2006).
  • de Pril R, Fischer DF, Maat-Schieman ML et al. Accumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases. Hum. Mol. Genet.13(16), 1803–1813 (2004).
  • Burnett B, Li F, Pittman RN. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum. Mol. Genet.12(23), 3195–3205 (2003).
  • Kalchman MA, Graham RK, Xia G et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem.271(32), 19385–19394 (1996).
  • Bett JS, Goellner GM, Woodman B, Pratt G, Rechsteiner M, Bates GP. Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington’s disease mice: exclusion of proteasome activator REGγ as a therapeutic target. Hum. Mol. Genet.15(1), 33–44 (2006).
  • Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell14(1), 95–104 (2004).
  • Groll M, Huber R. Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta1695(1–3), 33–44 (2004).
  • Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control10(5), 361–369 (2003).
  • Richardson PG, Barlogie B, Berenson J et al. A Phase II study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med.348(26), 2609–2617 (2003).
  • Richardson PG, Barlogie B, Berenson J et al. Extended follow-up of a Phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer106(6), 1316–1319 (2006).
  • Richardson PG, Sonneveld P, Schuster MW et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med.352(24), 2487–2498 (2005).
  • Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol.15(1), 27–33 (2005).
  • Verma R, Peters NR, D’Onofrio M et al. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science306(5693), 117–120 (2004).
  • Miller VM, Nelson RF, Gouvion CM et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. J. Neurosci.25(40), 9152–9161 (2005).
  • Chen Q, Thorpe J, Dohmen JR, Li F, Keller JN. Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic. Biol. Med.40(1), 120–126 (2006).
  • Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES. Overexpression of proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem.280(12), 11840–11850 (2005).
  • Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y. Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res.1032(1–2), 176–182 (2005).
  • Katsuno M, Sang C, Adachi H et al. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc. Natl Acad. Sci. USA102(46), 16801–16806 (2005).
  • Waza M, Adachi H, Katsuno M et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med.11(10), 1088–1095 (2005).
  • Berkers CR, Verdoes M, Lichtman E et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods2(5), 357–362 (2005).
  • Ishiura S, Sano M, Kamakura K, Sugita H. Isolation of two forms of the high-molecular-mass serine protease, ingensin, from porcine skeletal muscle. FEBS Lett.189(1), 119–123 (1985).
  • Lam YA, Huang JW, Showole O. The synthesis and proteasomal degradation of a model substrate Ub5DHFR. Methods Enzymol.398, 379–390 (2005).
  • Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol.18(5), 538–543 (2000).
  • Fiebiger E, Story C, Ploegh HL, Tortorella D. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO J.21(5), 1041–1053 (2002).
  • Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein aggregation. Science292(5521), 1552–1555 (2001).
  • Chauhan D, Catley L, Li G et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell8(5), 407–419 (2005).
  • Dang LC, Melandri FD, Stein RL. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry37(7), 1868–1879 (1998).
  • Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T. Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem. Biophys. Res. Commun.251(3), 688–692 (1998).
  • Hemelaar J, Borodovsky A, Kessler BM et al. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell Biol.24(1), 84–95 (2004).
  • Hemelaar J, Galardy PJ, Borodovsky A, Kessler BM, Ploegh HL, Ovaa H. Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J. Proteome Res.3(2), 268–276 (2004).
  • Borodovsky A, Ovaa H, Kolli N et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol.9(10), 1149–1159 (2002).
  • Evans PC, Ovaa H, Hamon M et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J.378(Pt 3), 727–734 (2004).
  • Blum G, Mullins SR, Keren K et al. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat. Chem. Biol.1(4), 203–209 (2005).
  • Atlas. Country resources for neurological disorders. WHO Press (2004).
  • Victor MD, Ropper AH.Adams & Victor’s Principles of Neurology (8th Edition). McGraw-Hill, NY, USA (2005).
  • Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J.14(1), 65–77 (2000).
  • Zhang X, Smith DL, Meriin AB et al. A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc. Natl Acad. Sci. USA102(3), 892–897 (2005).
  • Arts GJ, Langemeijer E, Tissingh R et al. Adenoviral vectors expressing siRNAs for discovery and validation of gene function. Genome Res.13(10), 2325–2332 (2003).
  • van Es HH, Arts GJ. Biology calls the targets: combining RNAi and disease biology. Drug Discov. Today10(20), 1385–1391 (2005).
  • Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci.5(7), 633–639 (2002).
  • Mott RT, Dickson DW, Trojanowski JQ et al. Neuropathologic, biochemical, and molecular characterization of the frontotemporal dementias. J. Neuropathol. Exp. Neurol.64(5), 420–428 (2005).
  • Paviour DC, Lees AJ, Josephs KA et al. Frontotemporal lobar degeneration with ubiquitin-only-immunoreactive neuronal changes: broadening the clinical picture to include progressive supranuclear palsy. Brain127(Pt 11), 2441–2451 (2004).
  • Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci.28, 57–87 (2005).
  • Uchikado H, Delledonne A, Uitti R, Dickson DW. Coexistence of PSP and MSA: a case report and review of the literature. Acta Neuropathol. (Berl.)111(2), 186–192 (2006).
  • Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet.18(4), 202–209 (2002).
  • Tomokane N, Iwaki T, Tateishi J, Iwaki A, Goldman JE. Rosenthal fibers share epitopes with αB-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am. J. Pathol.138(4), 875–885 (1991).
  • Strong MJ, Kesavapany S, Pant HC. The pathobiology of amyotrophic lateral sclerosis: a proteinopathy? J. Neuropathol. Exp. Neurol.64(8), 649–664 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.