700
Views
76
CrossRef citations to date
0
Altmetric
Review

Environmental and dietary risk factors in Alzheimer’s disease

, , &
Pages 887-900 | Published online: 09 Jan 2014

References

  • Herbert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol.60, 1119–1122 (2003).
  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services task force on Alzheimer’s disease. Neurology34, 939–944 (1984).
  • Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci.12(10), 383–388 (1991).
  • Panegyras PK. The amyloid precursor protein gene: a neuropeptide gene with diverse functions in the central nervous system. Neuropeptides31, 523–535 (1997).
  • Ponte P, Gonzalez-DeWhitt P, Schilling J et al. A new A4 amyloid mRNA contains a domain homologous to serine protease inhibitors. Nature331, 525–527 (1988).
  • Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL. Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s Disease. Nature331, 528–530 (1988).
  • Preece P, Virley DJ, Costandi M et al. Amyloid precursor protein mRNA levels in Alzheimer’s disease brain. Brain Res. Mol. Brain Res.122, 1–9 (2004).
  • Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature357(6378), 500–503 (1992).
  • Goodenough S, Engert S, Behl C. Testosterone stimulates rapid secretory amyloid precursor protein release from rat hypothalamic cells via the activation of the mitogen-activated protein kinase pathway. Neurosci. Lett.296, 49–52 (2000).
  • Gandy S, Petanceska S. Regulation of Alzheimer β-amyloid precursor trafficking and metabolism. Biochim. Biophys. Acta.1502, 44–52 (2004).
  • Seubert P, Oltersdorf T, Lee MG et al. Secretion of β-amyloid precursor protein cleaved at the amino terminus of the β-amyloid peptide. Nature361(6049), 260–263 (1993).
  • Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature399(Suppl. 6738), A23–A31 (1999).
  • Wirths O, Multhaup G, Czech C et al. Intraneuronal Aβ accumulation precedes plaque formation in β-amyloid precursor protein and penicillin-1 double-transgenic mice. Neurosci. Lett.306, 116–120 (2001).
  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ. The oligomerization of amyloid β-protein beings intracellularly in cells derived from human brain. Biochemistry39(35), 10831–10839 (2000).
  • Rocca WA, Hofman A, Brayne C, Breteler MM, Clarke M, Copeland JR. Frequency and distribution of Alzheimer’s disease in Europe: a collaborative study of 1980–1990 prevalence findings. The EURODEM-Prevalence Research Group. Ann. Neurol.30(3), 381–390 (1991).
  • Kamboh MI. Molecular genetics of late-onset Alzheimer’s disease. Ann. Human Gen.68, 381–404 (2004).
  • Czech C, Tremp G, Pradier L. Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanisms. Prog. Neurobiol.60, 363–384 (2000).
  • Raiha I, Kaprio J, Koskenvuo M, Rajala T, Sourander L. Alzheimer’s disease in twins. Biomed. Pharmacother.51, 101–104 (1997).
  • Gatz M, Fratiglioni L, Johansson B et al. Complete ascertainment of dementia in the Swedish twin registry: the HARMONY study. Neurobiol. Aging26, 439–447 (2005).
  • Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int. J. Biochem. Cell Biol.37(6), 1145–1150 (2005).
  • Wahrle SE, Jiang H, Parsadanian M et al. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted ApoE. J. Biol. Chem.279(39), 40987–40993 (2004).
  • Lane RM, Farlow MR. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J. Lipid Res.46(5), 949–968 (2005).
  • Basha MR, Wei W, Bakheet SA et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and β-amyloid in the aging brain. J. Neurosci.25(4), 823–829 (2005).
  • Barker DJ. Fetal programming of coronary heart disease. Trends Endocrinol. Metab.13, 364–368 (2002).
  • Bush AI. The metallobiology of Alzheimer’s disease. Trends Neurosci.26(4), 207–214 (2003).
  • Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J. Neurol. Sci.143, 137–142 (1996).
  • Groves JT. Bioinorganic chemistry special feature: the bioinorganic chemistry of iron in oxygenases and supramolecular assemblies. Proc. Natl Acad. Sci. USA100, 3569–3574 (2003).
  • Fraunfelder H, McMahon BH, Austen RH, Chu K, Groves JT. The role of structure, energy landscape, dynamics and allostery in the enzymatic function of myoglobin. Proc. Natl Acad. Sci. USA98(5), 2370–2374 (2001).
  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol.14(6), 611–650 (2001).
  • Atamna H, Boyle K. Amyloid-β peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc. Natl Acad. Sci. USA103(9), 3381–3386 (2006).
  • Opazo C, Huang X, Cherny RA et al. Metalloenzyme-like activity of Alzheimer’s disease β-amyloid: Cu dependent catalytic conversion of dopamine, cholesterol and biological reducing agents to neurotoxic H2O2. J. Biol. Chem.2777(43), 40302–40308 (2002).
  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl Acad. Sci. USA96(4), 1716–1721 (1999).
  • Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE. Metallothionein III is reduced in Alzheimer’s disease. Brain Res.894(1), 37–45 (2001).
  • Religa D, Strozyk D, Cherny RA et al. Elevated cortical zinc in Alzheimer’s disease. Neurology67, 69–75 (2006).
  • Perry G, Taddeo MA, Peterson RB et al. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer’s disease. Biometals16, 77–81 (2003).
  • Maynard CJ, Bush AI, Masters CL, Cappai R, Li Q-X. Metals and amyloid-β in Alzheimer’s disease. Int. J. Exp. Path.86, 147–159 (2005).
  • Atwood C, Scarpa RC, Huang T et al. Characterization of copper interactions with Alzheimer amyloid β peptides: identification of an attomolar-affinity copper binding site on amyloid β1–42. J. Neurochem.75, 1219–1233 (2000).
  • Sparks DL, Schreurs BG. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA100(19), 11065–11069 (2003).
  • Barceloux DG. Copper. Clin. Toxicol.37(2), 217–230 (1999).
  • Abe T, Tohgi H, Isobe C, Murata T, Sato C. Remarkable increase in the concentration of 8-hydroxyguanosine in cerebrospinal fluid from patients with Alzheimer’s disease. J. Neurosci. Res.70(3), 447–450 (2002).
  • Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci. Lett.269(1), 52–54 (1999).
  • Montine TJ, Markesbery WR, Morrow JD, Roberts LJ. Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Ann. Neurol.44(3), 410–413 (1998).
  • McLachlan DR, Kruck TP, Lukiw WJ, Krishnan SS. Would decreased aluminum ingestion reduce the incidence of Alzheimer’s disease. Can. Med. Assoc. J.145(7), 793–804 (1991).
  • Beal MF, Mazurek MF, Ellison DW, Kowall NW, Solomon PR, Pendlebury WW. Neurochemical characteristics of aluminum-induced neurofibrillary degeneration in rabbits. Neuroscience29(2), 339–346 (1989).
  • Nehru B, Anand P. Oxidative damage following chronic aluminum exposure in adult and pup rat brains. J. Trace Elem. Med. Biol.19, 203–208 (2005).
  • Exely C. A molecular mechanism of aluminum-induced Alzheimer’s disease? J. Inorg. Biochem.76, 133–140 (1999).
  • Klatzo I, Wisniewski H, Streicher E. Experimental production of neurofibrillary degeneration: light microscope observations. J. Neuropathol. Exp. Neurol.24, 187–199 (1965).
  • Shin R, Lee VM, Trojanowski JQ. Aluminum modifies the properties of Alzheimer’s disease PHFτ proteins in vivo and in vitro.J. Neurosci.14(11), 7221–7233 (1994).
  • Muma NA, Singer SM. Aluminum-induced neuropathology: transient changes in microtubule-associated proteins. Neurotoxicol. Teratol.18(6), 679–690 (1996).
  • Tokutake S, Nagase H, Morisake S, Oyanagi S. Aluminum detected in senile plaques and neurofibrillary tangles is contained in lipofuscin granules with silicon probably as aluminosilicate. Neurosci. Lett.185, 99–102 (1995).
  • Lovell MA, Ehmann WD, Markesbery WR. Laser microprobe analysis of brain aluminum in Alzheimer’s disease. Ann. Neurol.33(1), 36–42 (1993).
  • Amaducci LA, Fratiglioni L, Rocca WA et al. Risk factors for clinically diagnosed Alzheimer’s disease: a case-control study of an Italian population. Neurology36, 922–931 (1986).
  • Wettstein A, Aeppli j, Gautschi K, Peters M. Failure to find a relationship between amnestic skills of octogenarians and aluminum in drinking water. Int. Arch. Occup. Environ. Health63, 97–103 (1991).
  • Munoz DG, Feldman H. Causes of Alzheimer’s disease. Can. Med. Assoc. J.162, 65–72 (2000).
  • Krigman MR, Bouldin TW, Mushak P. Lead. Experimental and Clinical Neurotoxicology. Spencer PS, Schaumburg HH (Eds). Oxford University Press, NY, USA 490–507 (1980).
  • Barry PSI, Mossman DB. Lead concentrations in human tissues. Br. J. Ind. Med.27, 339–351 (1970).
  • Meyer PA, Pivetz T, Dignam TA, Homa DM, Schoonover J, Brody D. Surveillance for elevated blood lead levels among children – United States, 1997–2001. Morb. Mortal. Wkly Rep.52(SS10), 1–21 (2003).
  • Canfield RL, Henderson CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10 µg per deciliter. N. Engl. J. Med.348(16), 1517–1526 (2003).
  • Needleman HL, Gunnoe C, Leviton A et al. Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N. Engl. J. Med.300(13), 689–695 (1979).
  • Schwartz BS, Stewart WF, Bolla KI et al. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology55, 1144–1150 (2000).
  • Stewart WF, Schwartz BS, Davatzikos C et al. Past adult lead exposure is linked to neurodegeneration measured by brain MRI. Neurology66, 1476–1484 (2006).
  • Lindahl LS, Bird L, Legare ME, Mikeska G, Bratton GR, Tiffany-Castiglioni E. Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation. Toxiocol. Sci.50(2), 236–243 (1999).
  • Qian Y, Harris ED, Zheng Y, Tiffany-Castiglioni E. Lead targets GRP78, a molecular chaperone in C6 rat glioma cells. Toxicol. Appl. Pharmacol.163(3), 260–266 (2000).
  • Reyes PF, Gonzalez CF, Zalewska MK, Besarab A. Intracranial calcification in adults with chronic lead exposure. Am. J. Roentgenol.146(2), 267–270 (1986).
  • Haraguchi T, Ishizu H, Takehisa Y et al. Lead content of brain tissue in diffuse neurofibrillary tangles with calcification (DNTC): the possibility of lead neurotoxicity. Neuroreport12(18), 3887–3890 (2001).
  • Niklowitz WJ, Mandybur TI. Neurofibrillary changes following childhood lead encephalopathy. J. Neuropathol. Exp. Neurol.34(5), 445–455 (1975).
  • Basha MR, Wei W, Brydie M, Razmiafshari M, Zawia NH. Lead-induced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: in vivo evidence for Pb and Zn competition. Int. J. Dev. Neurosci.21, 1–12 (2003).
  • Basha MR, Manjari M, Siddiqi HK et al. Lead (Pb) exposure and its effect on APP proteolysis and Aβ aggregation. FASEB J.19, 2083–2084 (2005).
  • Klassen CD. Nonmetallic environmental toxicants: air pollutants, solvents and vapors, and pesticides. In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (9th Edition). Hardman JG, Limbird LE (Eds). McGraw-Hill Companies Inc., OH, USA 1673–1696 (1996).
  • US EPA Air Quality Criteria for Particulate Matter. 600/P-99/002aF-bF. Environmental Protection Agency (2004).
  • Calderon-Garcinduenas L, Maronpot RR, Torres-Jardon R et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol. Pathol.31, 524–538 (2003).
  • Calderon-Garcinduenas L, Reed W, Maronpot RR et al. Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol. Pathol.32, 650–658 (2004).
  • Koenig JQ, Pierson WE. Air pollutants and the respiratory system: toxicity and pharmacologic interventions. J. Toxicol. Clin. Toxicol.29(3), 401–411 (1991).
  • Neas LM, Dockery DW, Burge H, Koutraki P, Speizer FE. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am. J. Epidemiol.143(8), 797–807 (1996).
  • Rahman Q, Norwood J, Hatch G. Evidence that exposure of particulate air pollutants to human and rat alveolar macrophages leads to differential oxidative response. Biochem. Biophys. Res. Commun.240, 669–672 (1997).
  • Ross MA, Persky VW, Schef PA et al. Effect of ozone and aeroallergens on the respiratory health of Asthmatics. Arch. Environ. Health57(6), 568–578 (2002).
  • Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Care Med.166, 1240–1247 (2002).
  • Mills NL, Amin N, Robinson SD et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Respir. Care Med.173, 426–431 (2006).
  • Peters A, Veronesi B, Calderon-Garcinduenas L et al. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part. Fibre Toxicol.3, 13 (2006).
  • Risom L, Moller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mut. Res.592, 119–137 (2005).
  • Oberdorster G, Sharp Z, Atudorei V et al. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol.16, 437–445 (2004).
  • Ubogu E, Cossoy MB, Ransohoff RM. The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol. Sci.27(1), 48–55 (2006).
  • Corasantini MT, Delfilippo R, Rodino P, Nappi G, Nistico G. Evidence that paraquat is able to cross the blood–brain barrier to a different extent in rats of various age. Func. Neurol.6(4), 385–391 (1991).
  • Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR. Parkinson’s disease and brain levels of organochlorine pesticides. Ann. Neurol.36(1), 100–103 (1994).
  • Gauthier E, Fortier I, Courchesne F, Pepin P, Mortimer J, Gauvreau D. Environmental pesticide exposure as a risk factor for Alzheimer’s disease: a case-control study. Environ. Res.86, 37–45 (2001).
  • Schulte PA, Burnett CA, Boeniger MF, Johnson J. Neurodegenerative diseases: occupational and occurrence and potential risk factors, 1982 through 1991. Am. J. Pub. Health86(9), 1281–1288 (1996).
  • Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartiques JF, Brochard P. Neurodegenerative diseases and exposure to pesticides in the elderly. Am. J. Epidemiol.157(5), 409–414 (2003).
  • Taylor P. Anticholinesterase agents. In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (9th Edition). Hardman JG, Limbird LE (Eds). McGraw-Hill Companies Inc., OH, USA 161–176 (1996).
  • Boyd CA, Weiler MH, Porter WP. Behavioral and neurochemical changes associated with chronic exposure to low-level concentration of pesticide mixtures. J. Toxicol. Environ. Health30, 209–221 (1990).
  • Karczmar A. Invited review: anticholinesterases: dramatic aspects of their use and misuse. Neurochem. Int.32, 401–411 (1998).
  • Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science21, 408–417 (1982).
  • Peters BH, Levin HS. Effects of physostigmine and lecithin on memory in Alzheimer’s disease. Ann. Neurol.6(3), 219–221 (1979).
  • Davis KL, Mohs RC, Tinklenberg JR, Pfefferbaum A, Hollister LE, Kopell BS. Physostigmine: improvement of long-term memory processes in normal humans. Science201, 272–274 (1978).
  • Feldman H, Gauthier S, Hecker J et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology57, 613–620 (2001).
  • Gauthier S, Feldman H, Hecker J, Vellas B, Emir B, Subbiah P. Functional, cognitive and behavioral effects of donepezil in patients with Alzheimer’s disease. Curr. Med. Res. Opin.18(6), 347–354 (2002).
  • Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA271(13), 985–991 (1994).
  • Lahiri DK, Rogers JT, Greig NH, Sambamurti K. Rationale for the development of cholinesterase inhibitors as anti-Alzheimer’s agents. Curr. Pharm. Des.10, 3111–3119 (2004).
  • Wang J, Ho L, Qin W et al. Caloric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer’s disease. FASEB J.19(6), 659–661 (2005).
  • Luchinger JA, Tang MX, Miller J, Shea S, Mayeux R. Caloric intake and the risk of Alzheimer disease. Arch. Neurol.59, 1258–1263 (2002).
  • Ott A, Stolk RP, van Harskamp F, Grobbee DE, Breteler MM. Association of diabetes mellitus and dementia: the Rotterdam study. Diabetologia39, 1392–1397 (1996).
  • Zhao L, Teter B, Morihara T et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J. Neurosci.24(49), 11120–11126 (2004).
  • Farris W, Mansourian S, Chang Y et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo.Proc. Natl Acad. Sci. USA100(7), 4162–4167 (2003).
  • Qin W, Yang T, Ho L et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem.281(31), 21745–21754 (2006).
  • Anekonda TS. Resveratrol – a boon for treating Alzheimer’s disease. Brain Res. Brain Res. Rev.52, 316–326 (2006).
  • Seshadri S, Beiser A, Selhub J et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med.346, 476–483 (2002).
  • Miller JW, Nadeau MR, Smith D, Selhub J. Vitamin B-6 deficiency vs folate deficiency: comparison of responses to methionine loading in rats. Am. J. Clin. Nutr.59, 1033–1039 (1994).
  • Miller AL, Kelly GS. Methionine and homocysteine metabolism and the nutritional prevention of certain birth defects and complications of pregnancy. Altern. Med. Rev.1(4), 220–235 (1996).
  • Najib S, Sanchez-Margalet V. Homocysteine thiolactone inhibits insulin signaling, and glutathione has a protective effect. J. Molec. Endocrinol.27, 85–91 (2001).
  • Guidi I, Galimberti D, Lonati S et al. Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging27, 262–269 (2006).
  • Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT. Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J. Alzheimers Dis.9(4), 435–443 (2006).
  • Annerbo S, Wahlund L, Lökk J. The relation between homocysteine levels and development of Alzheimer’s disease in mild cognitive impairment patients. Dement. Geriatr. Cogn. Dis.20(4), 209–214 (2005).
  • Kado DM, Karlamangla AS, Huang M et al. Homocysteine versus the vitamins folate, B6 and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am. J. Med.118, 161–167 (2005).
  • Ravaglia G, Forti P, Maioli F et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr.82, 636–643 (2005).
  • Ariogula S, Cankurtarana M, Dagli N, Khalila M, Yavuz B. Vitamin B12, folate, homocysteine and dementia: are they really related? Arch. Gerontol. Geriatr.40, 139–146 (2005).
  • Wang B, Jin F, Kan R et al. Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer’s disease. J. Mol. Neurosci.27(1), 23–27 (2005).
  • Kamath AF, Chauhan AK, Kisucka J et al. Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood107(2), 591–593 (2006).
  • Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S et al. Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid β peptide levels. Neurobiol. Dis.22, 651–656 (2006).
  • Santiard-Baron D, Aupetit J, Janel N. Plasma homocysteine levels are not increased in murine models of Alzheimer’s disease. Neurosci. Res.53, 447–449 (2005).
  • Lehmann M, Regland B, Blennow K, Gottfries CG. Vitamin B12-B6-folate treatment improves blood–brain barrier function in patients with hyperhomocysteinemia and mild cognitive impairment. Dement. Geriatr. Cogn. Disord.16, 145–150 (2003).
  • Irizarry MC, Gurol ME, Raju S et al. Association of homocysteine with plasma amyloid β protein in aging and neurodegenerative disease. Neurology65(9), 1402–1408 (2005).
  • Jarvik GP, Wijsman EM, Kukull WA, Schellenber GD, Yu C, Larson EB. Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case-control study. Neurology45(6), 1092–1096 (2005).
  • Hofman A, Ott A, Breteler MM et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam study. Lancet349(9046), 151–154 (1997).
  • Evans RM, Hui S, Perkins A, Lahiri DK, Poirier J, Farlow MR. Cholesterol and APOE genotype interact to influence Alzheimer disease progression. Neurology62(10), 1869–1871 (2004).
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. Statins and the risk of dementia. Lancet356(9242), 1627–1631 (2000).
  • Rockwood K, Kirkland S, Hogan DB et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol.59(2), 223–227 (2002).
  • Tokuda T, Tamaoka A, Matsuno S et al. Plasma levels of amyloid β proteins did not differ between subjects taking statins and those not taking statins. Ann. Neurol.49, 546–547 (2001).
  • Ishii K, Tokuda T, Matsushima T et al. Pravastatin at 10 mg/day does not decrease plasma levels of either amyloid-β (Aβ) 40 or Aβ 42 in humans. Neurosci. Lett.350, 161–164 (2003).
  • Beffert U, Danik M, Krzywkowski P, Ramassamy C, Berrada F, Poirier J. The neurobiology of apolipoproteins and their receptors in the CNS and Alzheimer’s disease. Brain Res. Rev.27, 119–142 (1998).
  • Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. Deposition of iron and β-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J. Neurochem.99, 438–449 (2006).
  • Borroni B, Grassi M, Costanzi C, Archetti S, Caimi L, Padovani A. APOE genotype and cholesterol levels in lewy body dementia and Alzheimer disease: investigating genotype–phenotype effect on disease risk. Am. J. Geriatr. Psychiatry14, 1022–1031 (2006).
  • Puglielli L, Friedlich AL, Setchell KDR et al. Alzheimer disease β-amyloid activity mimics cholesterol oxidase. J. Clin. Invest.115, 2556–2563 (2005).
  • Hutter-Paier B, Huttunen H, Puglielli L et al. The ACAT inhibitor CP-113, 818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron44(2), 227–238 (2004).
  • Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J. Biol. Chem.280(8), 7377–7387 (2005).
  • Bjorkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol.24, 806–815 (2004).
  • Papassotiropoulos A, Streffer JR, Tsolaki M et al. Increased brain β-amyloid load, phosphorylated τ, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch. Neurol.60, 29–35 (2003).
  • Borroni B, Archetti S, Agosti C et al. Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer disease: from risk factors to disease modulators. Neurobiol. Aging25(6), 747–751 (2004).
  • Li Y, Chu LW, Chen YQ, St. George-Hyslop P, Song YQ. Intron 2 (T/C) CYP46 polymorphism is associated with Alzheimer’s disease in Chinese patients. Dement. Geriatr. Cogn. Disord.22, 399–404 (2006).
  • Heverin M, Bodganovic N, Lütjohann D et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J. Lipid Res.45, 186–193 (2004).
  • Wirths O, Thelen K, Breyhan H et al. Decreased plasma cholesterol levels during aging in transgenic mouse models of Alzheimer’s disease. Exp. Gerontol.41(2), 220–224 (2006).
  • Kuusisto J, Koivisto K, Mykkanen L et al. Association between features of the insulin resistance syndrome and Alzheimer’s disease independently of apolipoprotein E4 phenotype: cross sectional population based study. Br. Med. J.315(7115), 1045–1049 (1997).
  • Solfrizzi V, Panza F, D’Introno A et al. Lipoprotein(a), apolipoprotein E genotype, and risk of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry72(6), 732–736 (2002).
  • Panza F, D’Introno A, Colacicco AM et al. Lipid metabolism in cognitive decline and dementia. Brain Res. Rev.51(2), 275–292 (2006).
  • Stewart R, White LR, Xue QL, Launer LJ. Twenty-six year change in total cholesterol levels and incident dementia: the Honolulu–Asia Aging Study. Arch Neurol.64(1), 103–107 (2007).
  • Lambert JC, Chartier-Harlin MC, Cottel D et al. Is the LDL receptor-related protein involved in Alzheimer’s disease? Neurogenetics2(2), 109–113 (1999).
  • Tully AM, Roche HM, Doyle R et al. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: a case–control study. Br. J. Nutr.89(4), 483–490 (2003).
  • Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch. Neurol.63(10), 1402–1408 (2006).
  • Schaefer EJ, Bongard V, Beiser AS et al. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch. Neurol.63(11), 1545–1550 (2006).
  • Calon F, Lim GP, Morihara T et al. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J. Neurosci.22(3), 617–626 (2005).
  • Florent S, Malaplate-Armand C, Youssef I et al. Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-β oligomers. J. Neurochem.96(2), 385–395 (2006).
  • Oksman M, Iivonen H, Hogyes E et al. Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on β-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol. Dis.23, 563–572 (2006).
  • Lukiw WJ, Cui J-G, Marcheselli VL et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Invest.115, 2774–2783 (2005).
  • Butterfield DA, Gnjec A, Poon HF et al. Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J. Alzheimers Dis.10(4), 391–397 (2006).
  • Sultana R, Newman SF, Abdul HM et al. Protective effect of D609 against amyloid-β1–42-induced oxidative modification of neuronal proteins: redox proteomics study. J. Neurosci. Res.84(2), 409–417 (2006).
  • Sultana R, Boyd-Kimball D, Poon HF et al. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging27(11), 1564–1576 (2006).
  • Wang J, Ho L, Zhao Z et al. Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer’s disease. FASEB J.20(13), 2313–2320 (2006).
  • Yang F, Lim GP, Begum AN et al. Curcumin inhibits formation of amyloid oligomers and fibrils, binds plaques, and reduces amyloid in vivo.J. Biol. Chem.280(7), 5892–5901 (2005).
  • Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Muller-Spahn F. Red wine ingredient resveratrol protects from β-amyloid neurotoxicity. Gerontology49(6), 380–383 (2003).
  • Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J. Biol. Chem.280(45), 37377–37382 (2005).
  • de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res.49(5), 405–430 (2005).
  • Labinskyy N, Csiszar A, Veress G et al. Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr. Med. Chem.13(9), 989–996 (2006).
  • Kim YA, Lim SY, Rhee SH et al. Resveratrol inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in β-amyloid-treated C6 glioma cells. Int. J. Mol. Med.17(6), 1069–1075 (2006).
  • Staehelin HB. Micronutrients and Alzheimer’s disease. Proc. Nutr. Soc.64, 565–570 (2005).
  • Morris MC, Evans DA, Bienias JL et al. Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J. Neurol. Neurosurg. Psychiatry75, 1093–1099 (2004).
  • Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch. Neurol.63(12), 1709–1717 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.