482
Views
79
CrossRef citations to date
0
Altmetric
Special Report

Vascular risk factors and Alzheimer’s disease

, &
Pages 743-750 | Published online: 09 Jan 2014

References

  • Hachinski V, Munoz D. Vascular factors in cognitive impairment – where are we now? Ann. NY Acad. Sci.903, 1–5 (2000).
  • Skoog I, Lernfelt B, Landahl S et al. 15-year longitudinal study of blood pressure and dementia. Lancet347, 1141–1145 (1996).
  • Leibson CL, Rocca WA, Hanson VA et al. Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am. J. Epidemiol.145, 301–308 (1997).
  • Ott BR. Cognition and behavior in patients with Alzheimer’s disease. J. Gend. Specif. Med.2, 63–69 (1999).
  • Harris Y, Gorelick PB, Freels S, Billingsley M, Brown N, Robinson D. Neuroepidemiology of vascular and Alzheimer’s dementia among African–American women. J. Natl Med. Assoc.87, 741–745 (1995).
  • Mortel KF, Wood S, Pavol MA, Meyer JS, Rexer JL. Analysis of familial and individual risk factors among patients with ischemic vascular dementia and Alzheimer’s disease. Angiology44, 599–605 (1993).
  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology53, 1937–1942 (1999).
  • Hofman A, Ott A, Breteler MM et al. Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet349, 151–154 (1997).
  • Launer LJ, White LR, Petrovitch H, Ross GW, Curb JD. Cholesterol and neuropathologic markers of AD: a population-based autopsy study. Neurology59, 788–789 (2002).
  • Ott A, Breteler MM, deBruyne MC, van Harskamp F, Grobbee DE, Hofman A. Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke28(2), 316–321 (1997).
  • Kilander L, Andren B, Nyman H, Lind L, Boberg M, Lithell H. Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly men. Stroke29, 1816–1820 (1998).
  • Ott BR, Grace J. Vascular dementia. Med. Health R.I.80, 150–154 (1997).
  • Petrovitch HL, White LR, Izmirilian G et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol. Aging21, 57–62 (2000).
  • Kivipelto M, Helkala EL, Hanninen T et al. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology56, 1683–1689 (2001).
  • Kivipelto M, Helkala EL, Laakso MP et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. Br. Med. J.322(7300), 1447–1451 (2001).
  • Launer LJ, Masaki K, Petrovitch H, Foley D, Havlik RJ. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu–Asia Aging Study. JAMA274, 1846–1851 (1995).
  • Tan ZS, Seshadri S, Beiser A et al. Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch. Intern. Med.163, 1053–1057 (2003).
  • Olichney JM, Hansen LA, Lee JH, Hofstetter CR, Katzman R, Thal LJ. Relationship between severe amyloid angiopathy, apolipoprotein E genotype, and vascular lesions in Alzheimer’s disease. Ann. NY Acad. Sci.903, 138–143 (2000).
  • Johnston JM, Nazar-Stewart V, Kelsey SF, Kamboh MI, Ganguli M. Relationships between cerebrovascular events, APOE polymorphism and Alzheimer’s disease in a community sample. Neuroepidemiology19, 320–326 (2000).
  • Skoog I. Vascular aspects in Alzheimer’s disease. J. Neural Transm. Suppl.59, 37–43 (2000).
  • Dede DS, Yavuz B, Yavuz BB et al. Assessment of endothelial function in Alzheimer’s disease: is Alzheimer’s disease a vascular disease? J. Am. Geriatr. Soc.55, 1613–1617 (2007).
  • Forette F, Seux ML, Staessen JA et al. Prevention of dementia in randomised double-blind placebo-controlled systolic hypertension in Europe (Syst-Eur) trial. Lancet352, 1347–1351 (1998).
  • Forette F, Seux ML, Staessen JA et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch. Intern. Med.162, 2046–2052 (2002).
  • Tzourio C, Anderson C, Chapman N et al. Effects of blood pressure lowering with perindopril and indapamide therapy on dementia and cognitive decline in patients with cerebrovascular disease. Arch. Intern. Med.163, 1069–1075 (2003).
  • Murray MD, Lane KA, Gao S et al. Preservation of cognitive function with antihypertensive medications: a longitudinal analysis of a community-based sample of African Americans. Arch. Intern. Med.162, 2090–2096 (2002).
  • Lithell H, Hansson L, Skoog I et al. The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J. Hypertens.21, 875–886 (2003).
  • Hooijmans CR, Rutters F, Dederen PJ et al. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched typical western diet (TWD). Neurobiol. Dis.28, 16–29 (2007).
  • Wang J, Ho L, Chen L et al. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Invest.117, 3393–3402 (2007).
  • Sarti C, Pantoni L. Experimental models of vascular dementia: a focus on white matter disease and incomplete infarction. In: Vascular Cognitive Impairment. Bowler JV and Hachinski V (Eds). Oxford University Press, NY, USA 76–92 (2003).
  • Kalaria RN, Bhatti SU, Palatinsky EA et al. Accumulation of the β amyloid precursor protein at sites of ischemic injury in rat brain. Neuroreport4, 211–214 (1993).
  • Jendroska K, Poewe W, Daniel SE et al. Ischemic stress induces deposition of amyloid b immunoreactivity in human brain. Acta Neuropathol. (Berl.)90(5), 461–466 (1995).
  • Jendroska K, Hoffmann OM, Patt S. Amyloid b peptide and precursor protein (APP) in mild and severe brain ischemia. Ann. NY Acad. Sci.826, 401–405 (1997).
  • Grilli M, Diodato E, Lozza G et al. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc. Natl Acad. Sci. USA97, 12822–12827 (2000).
  • Mattson MP, Zhu H, Yu J, Kindy MS. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci.20, 1358–1364 (2000).
  • Zhang F, Eckman C, Younkin S, Hsiao KK, Iadecola C. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci.17(20), 7655–7661 (1997).
  • Whitehead SN, Hachinski VC, Cechetto DF. Interaction between a rat model of cerebral ischemia and β-amyloid toxicity: I. Inflammatory responses. Stroke36, 107–112 (2005).
  • Whitehead SN, Cheng G, Hachinski VC, Cechetto DF. Interaction between a rat model of cerebral ischemia and β-amyloid toxicity: II. Effects of triflusal. Stroke36(8), 1782–1789 (2005).
  • Whitehead SN, Cheng G, Hachinski VC, Cechetto DF. Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke38, 3245–3250 (2007).
  • Grammas P, Yamada M, Zlokovic B. The cerebromicrovasculature: a key player in the pathogenesis of Alzheimer’s disease. J. Alzheimers Dis.4, 217–223 (2002).
  • de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann. NY Acad. Sci.977, 196–215 (2002).
  • Kalaria R. Similarities between Alzheimer’s disease and vascular dementia. J. Neurol. Sci.203–204, 29–34 (2002).
  • Aliev G, Seyidova D, Neal ML et al. Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice. Ann. NY Acad. Sci.977, 45–64 (2002).
  • Zlokovic BV. Vascular disorder in Alzheimer’s disease: role in pathogenesis of dementia and therapeutic targets. Adv. Drug Deliv. Rev.54, 1553–1559 (2002).
  • Pluta R, Misicka A, Barcikowska M, Spisacka S, Lipkowski AW, Januszewski S. Possible reverse transport of β-amyloid peptide across the blood-brain barrier. Acta Neurochir. Suppl.76, 73–77 (2000).
  • Rhodin JA, Thomas T. A vascular connection to Alzheimer’s disease. Microcirculation8, 207–220 (2001).
  • Giri R, Selvaraj S, Miller CA et al. Effect of endothelial cell polarity on β-amyloid-induced migration of monocytes across normal and AD endothelium. Am. J. Physiol. Cell Physiol.283, C895-C904 (2002).
  • MacIntyre A, Hammond CJ, Little CS, Appelt DM, Balin BJ. Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells. FEMS Microbiol. Lett.217, 167–172 (2002).
  • MacIntyre A, Abramov R, Hammond CJ et al.Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J. Neurosci. Res.71, 740–750 (2003).
  • Kalaria RN. Linking cerebrovascular defense mechanisms in brain ageing and Alzheimer’s disease. Neurobiol. Aging (2008) (Epub ahead of print).
  • Zhang X, Zhou K, Wang R et al. Hypoxia-inducible factor 1α (HIF-1α)-mediated hypoxia increases BACE1 expression and β-amyloid generation. J. Biol. Chem.282, 10873–10880 (2007).
  • van Dijk EJ, Prins ND, Hofman A, van Duijn CM, Koudstaal PJ, Breteler MM. Plasma β amyloid and impaired CO2-induced cerebral vasomotor reactivity. Neurobiol. Aging28, 707–712 (2007).
  • Sun X, He G, Qing H et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl Acad. Sci. USA103, 8727–8732 (2006).
  • Arvin B, Neville LF, Barone FC, Feuerstein GZ. The role of inflammation and cytokines in brain injury. Neurosci. Biobehav. Rev.20(3), 445–452 (1996).
  • Nogawa S, Zhang F, Ross ME, Iadecola C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci.17(8), 2746–2755 (1997).
  • Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol.56(2), 149–171 (1998).
  • Bales KR, Du Y, Holtzman D, Cordell B, Paul SM. Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Aβ-induced glial activation, NF-κB, and apolipoprotein E. Neurobiol. Aging21, 427–432 (2000).
  • McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Brain Res. Rev.21(2), 195–218 (1995).
  • McGeer PL, McGeer EG, Yasojima K. Alzheimer disease and neuroinflammation. J. Neural Transm. Suppl.59, 53–57 (2000).
  • McGeer PL, McGeer EG. Innate immunity, local inflammation, and degenerative disease. Sci. Aging Knowledge Environ.29, RE3 (2002).
  • Passinetti GM. From epidemiology to therapeutic trials with anti-inflammatory drugs in Alzheimer’s disease: the role of NSAIDs and cyclooxygenase in β-amyloidosis and clinical dementia. J. Alzheimers Dis.4, 435–445 (2002).
  • Veld BA, Ruitenberg A, Hofman A et al. Nonsteroidal antiinflammatory drugs and the risk of Alzheimer’s disease. N. Engl. J. Med.345, 1515–1521 (2001).
  • Fernández de Arriba A, Cavalcanti F, Miralles A et al. Inhibition of cyclooxygenase-2 expression by 4-trifluoromethyl derivatives of salicylate, triflusal, and its deacetylated metabolite, 2-hydroxy-4-trifluoromethylbenzoic acid. Mol. Pharmacol.55, 753–760 (1999).
  • Cheng G, Whitehead SN, Hachinski V, Cechetto DF. Effects of pyrrolidine dithiocarbamate on β-amyloid (25-35)-induced inflammatory responses and memory deficits in the rat. Neurobiol. Dis.23(1), 140–151 (2006).
  • Ekstrom PA, Tomlinson DR. Impaired nerve regeneration in streptozotocin-diabetic rats is improved by treatment with gangliosides. Exp. Neurol.109, 200–203 (1990).
  • Feldman EL, Stevens MJ, Greene DA. Pathogenesis of diabetic neuropathy. Clin. Neurosci.4, 365–370 (1997).
  • Greene DA, Stevens MJ, Feldman EL. Diabetic neuropathy: scope of the syndrome. Am. J. Med.107, S2–S8 (1999).
  • Yorek MA, Wiese TJ, Davidson EP et al. Reduced motor nerve conduction velocity and Na+-K+-ATPase activity in rats maintained on L-fucose diet. Reversal by myo-inositol supplementation. Diabetes42, 1401–1406 (1993).
  • Biessels GJ, Kappelle AC, Bravenboer B, Erkelens DW, Gispen WH. Cerebral function in diabetes mellitus. Diabetologia37, 643–650 (1994).
  • McCall AL. The impact of diabetes on the CNS. Diabetes41, 557–570 (1992).
  • Asplund K, Hagg E, Helmers C, Lithner F, Strand T, Wester PO. The natural history of stroke in diabetic patients. Acta Med. Scand.207, 417–424 (1980).
  • Stewart R, Liolitsa D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet. Med.16, 93–112 (1999).
  • Auer RN, Wieloch T, Olsson Y, Siesjo BK. The distribution of hypoglycemic brain damage. Acta Neuropathol. (Berl.)64, 177–191 (1984).
  • Auer R, Kalimo H, Olsson Y, Wieloch T. The dentate gyrus in hypoglycemia: pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol. (Berl.)67, 279–288 (1985).
  • Kramer L, Fasching P, Madl C et al. Previous episodes of hypoglycemic coma are not associated with permanent cognitive brain dysfunction in IDDM patients on intensive insulin treatment. Diabetes47, 1909–1914 (1998).
  • Schoenle EJ, Schoenle D, Molinari L, Largo RH. Impaired intellectual development in children with Type I diabetes: association with HbA(1c), age at diagnosis and sex. Diabetologia45, 108–114 (2002).
  • Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol.Dis.6, 347–363 (1999).
  • Bertrand F, Atfi A, Cadoret A et al. A role for nuclear factor κB in the antiapoptotic function of insulin. J. Biol. Chem.273, 2931–2938 (1998).
  • Lee-Kwon W, Park D, Baskar PV, Kole S, Bernier M. Antiapoptotic signaling by the insulin receptor in Chinese hamster ovary cells. Biochemistry37, 15747–15757 (1998).
  • Russell JW, Feldman EL. Insulin-like growth factor-I prevents apoptosis in sympathetic neurons exposed to high glucose. Horm. Metab. Res.31(2–3), 90–106 (1999).
  • Russell JW, Windebank AJ, Schenone A, Feldman EL. Insulin-like growth factor-I prevents apoptosis in neurons after nerve growth factor withdrawal. J. Neurobiol.36, 455–467 (1998).
  • Singleton JR, Randolph AE, Feldman EL. Insulin-like growth factor I receptor prevents apoptosis and enhances neuroblastoma tumorigenesis. Cancer Res.56, 4522–4529 (1996).
  • Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J. Neurochem.64, 1231–1237 (1995).
  • Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Exp. Neurol.115, 292–296 (1992).
  • Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. The therapeutic effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental diabetic neuropathy in rats. J. Neurol. Sci.122, 28–32 (1994).
  • Rodriguez-Pena A, Botana M, Gonzalez M, Requejo F. Expression of neurotrophins and their receptors in sciatic nerve of experimentally diabetic rats. Neurosci. Lett.200, 37–40 (1995).
  • Tomlinson DR, Fernyhough P, Diemel LT. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes46(Suppl. 2), S43–S49 (1997).
  • McCall AL, Millington WR, Wurtman RJ. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc. Natl Acad. Sci. USA79, 5406–5410 (1982).
  • McCall AL, Gould JB, Ruderman NB. Diabetes-induced alterations of glucose metabolism in rat cerebral microvessels. Am. J. Physiol.247, E462–E467 (1984).
  • Reagan LP, Magariños AM, Lucas LR, van Bueren A, McCall AL, McEwen BS. Regulation of GLUT-3 glucose transporter in the hippocampus of diabetic rats subjected to stress. Am. J. Physiol.276(5 Pt 1), E879–E886 (1999).
  • Reagan LP, Magariños AM, Yee DK et al. Oxidative stress and HNE conjugation of GLUT3 are increased in the hippocampus of diabetic rats subjected to stress. Brain Res.862(1–2), 292–300 (2000).
  • Figlewicz DP, Brot MD, McCall AL, Szot P. Diabetes causes differential changes in CNS noradrenergic and dopaminergic neurons in the rat: a molecular study. Brain Res.736, 54–60 (1996).
  • Li ZG, Zhang W, Grunberger G, Sima AA. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res.946, 221–231 (2002).
  • Biessels GJ, Stevens EJ, Mahmood SJ, Gispen WH, Tomlinson DR. Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes. J. Neurol. Sci.140(1–2), 12–20 (1996). Erratum in: J. Neurol. Sci.144(1–2), 234 (1996).
  • Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J. Neurosci. Res.74(4), 512–523 (2003).
  • Popovic M, Biessels GJ, Isaacson RL, Gispen WH. Learning and memory in streptozotocin-induced diabetes rats in a novel spatial/object discrimination task. Behav. Brain Res.122(2), 201–207 (2001).
  • Nitta A, Murai R, Suzuki N et al. Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol. Teratol.24, 695–701 (2002).
  • Ubeda M, Rukstalis JM, Habener JF. Inhibition of cyclin-dependent kinase 5 activity protects pancreatic β cells from glucotoxicity. J. Biol. Chem.281, 28858–28864 (2006).
  • Ho L, Qin W, Pompl PN et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J.18, 902–904 (2004).
  • Matsuoka Y, Picciano M, Malester B et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol.158, 1345–1354 (2001).
  • Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci.23, 5088–5095 (2003).
  • Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol.62, 127–136 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.